BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3818649)

  • 1. Biosynthesis and secretion of the rat core-specific lectin. Relationship of post-translational modification and assembly to attainment of carbohydrate binding activity.
    Colley KJ; Baenziger JU
    J Biol Chem; 1987 Mar; 262(7):3415-21. PubMed ID: 3818649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modifications of the core-specific lectin. Relationship to assembly, ligand binding, and secretion.
    Colley KJ; Baenziger JU
    J Biol Chem; 1987 Jul; 262(21):10296-303. PubMed ID: 3112140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, processing, and secretion of the core-specific lectin by rat hepatocytes and hepatoma cells.
    Brownell MD; Colley KJ; Baenziger JU
    J Biol Chem; 1984 Mar; 259(6):3925-32. PubMed ID: 6706987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the post-translational modifications of the core-specific lectin. The core-specific lectin contains hydroxyproline, hydroxylysine, and glucosylgalactosylhydroxylysine residues.
    Colley KJ; Baenziger JU
    J Biol Chem; 1987 Jul; 262(21):10290-5. PubMed ID: 3611062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of the core-specific lectin from human serum and liver.
    Colley KJ; Beranek MC; Baenziger JU
    Biochem J; 1988 Nov; 256(1):61-8. PubMed ID: 3223912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells.
    Yeo KT; Parent JB; Yeo TK; Olden K
    J Biol Chem; 1985 Jul; 260(13):7896-902. PubMed ID: 2989265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis and processing of rat haptoglobin.
    Hanley JM; Haugen TH; Heath EC
    J Biol Chem; 1983 Jun; 258(12):7858-69. PubMed ID: 6863267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi.
    Spiro RG; Zhu Q; Bhoyroo V; Söling HD
    J Biol Chem; 1996 May; 271(19):11588-94. PubMed ID: 8626722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells.
    Arar C; Carpentier V; Le Caer JP; Monsigny M; Legrand A; Roche AC
    J Biol Chem; 1995 Feb; 270(8):3551-3. PubMed ID: 7876089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malignant transformation in hepatocytes is associated with the general increase of glycoprotein ligands specifically binding to the endogenous lectin CSL.
    Zanetta JP; Staedel C; Kuchler S; Zaepfel M; Meyer A; Vincendon G
    Carbohydr Res; 1991 Jun; 213():117-26. PubMed ID: 1933933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of epidermal growth factor receptor in human A431 cells. Glycosylation-dependent acquisition of ligand binding activity occurs post-translationally in the endoplasmic reticulum.
    Slieker LJ; Martensen TM; Lane MD
    J Biol Chem; 1986 Nov; 261(32):15233-41. PubMed ID: 3490480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/N-acetylglucosamine-binding lectin in rat liver.
    Haltiwanger RS; Lehrman MA; Eckhardt AE; Hill RL
    J Biol Chem; 1986 Jun; 261(16):7433-9. PubMed ID: 3711095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum.
    Smith MM; Lindstrom J; Merlie JP
    J Biol Chem; 1987 Mar; 262(9):4367-76. PubMed ID: 3549731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular localization and physiological significance of intracellular mannan-binding protein.
    Nonaka M; Ma BY; Ohtani M; Yamamoto A; Murata M; Totani K; Ito Y; Miwa K; Nogami W; Kawasaki N; Kawasaki T
    J Biol Chem; 2007 Jun; 282(24):17908-20. PubMed ID: 17442667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and assembly of the integrin, glycoprotein IIb-IIIa, in HEL cells.
    Rosa JP; McEver RP
    J Biol Chem; 1989 Jul; 264(21):12596-603. PubMed ID: 2501308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus.
    Sipos G; Puoti A; Conzelmann A
    J Biol Chem; 1995 Aug; 270(34):19709-15. PubMed ID: 7649981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substructural specificity and polyvalent carbohydrate recognition by the Entamoeba histolytica and rat hepatic N-acetylgalactosamine/galactose lectins.
    Yi D; Lee RT; Longo P; Boger ET; Lee YC; Petri WA; Schnaar RL
    Glycobiology; 1998 Oct; 8(10):1037-43. PubMed ID: 9719685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma.
    Kimura JH; Lohmander LS; Hascall VC
    J Cell Biochem; 1984; 26(4):261-78. PubMed ID: 6530407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast.
    Gaynor EC; te Heesen S; Graham TR; Aebi M; Emr SD
    J Cell Biol; 1994 Nov; 127(3):653-65. PubMed ID: 7962050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of desmosome assembly in epithelial cells: kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain.
    Pasdar M; Nelson WJ
    J Cell Biol; 1989 Jul; 109(1):163-77. PubMed ID: 2501314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.