These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
541 related articles for article (PubMed ID: 38186574)
1. Leveraging diverse cell-death patterns to predict the clinical outcome of immune checkpoint therapy in lung adenocarcinoma: Based on muti-omics analysis and vitro assay. Liang H; Li Y; Qu Y; Zhang L Oncol Res; 2023; 32(2):393-407. PubMed ID: 38186574 [TBL] [Abstract][Full Text] [Related]
2. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. Wei Q; Jiang X; Miao X; Zhang Y; Chen F; Zhang P J Cancer Res Clin Oncol; 2023 Oct; 149(13):11351-11368. PubMed ID: 37378675 [TBL] [Abstract][Full Text] [Related]
3. Prognostic Cell Death Index for Lung Adenocarcinoma: A Comprehensive Transcriptome-Based Analysis of Twelve Programmed Cell Death Pattern Genes. Chen F; Ma J; Hu S; Wu C; Chen S; Lin J Front Biosci (Landmark Ed); 2024 Apr; 29(4):135. PubMed ID: 38682187 [TBL] [Abstract][Full Text] [Related]
4. Identification of novel gene signature for lung adenocarcinoma by machine learning to predict immunotherapy and prognosis. Shu J; Jiang J; Zhao G Front Immunol; 2023; 14():1177847. PubMed ID: 37583701 [TBL] [Abstract][Full Text] [Related]
5. Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Zeng W; Wang J; Yang J; Chen Z; Cui Y; Li Q; Luo G; Ding H; Ju S; Li B; Chen J; Xie Y; Tong X; Liu M; Zhao J Front Immunol; 2023; 14():1217590. PubMed ID: 37492563 [TBL] [Abstract][Full Text] [Related]
6. NGEF is a potential prognostic biomarker and could serve as an indicator for immunotherapy and chemotherapy in lung adenocarcinoma. Chen X; Zhang T; He YQ; Miao TW; Yin J; Ding Q; Yang M; Chen FY; Zeng HP; Liu J; Zhu Q BMC Pulm Med; 2024 May; 24(1):248. PubMed ID: 38764064 [TBL] [Abstract][Full Text] [Related]
7. Combining autophagy and immune characterizations to predict prognosis and therapeutic response in lung adenocarcinoma. Li Q; Xie D; Yao L; Qiu H; You P; Deng J; Li C; Zhan W; Weng M; Wu S; Li F; Zhou Y; Zeng F; Zheng Y; Zhou H Front Immunol; 2022; 13():944378. PubMed ID: 36177001 [TBL] [Abstract][Full Text] [Related]
8. A New Prognostic Indicator of Immune Microenvironment and Therapeutic Response in Lung Adenocarcinoma Based on Peroxisome-Related Genes. Xiong Z; Zhang L; Fan W J Immunol Res; 2022; 2022():6084589. PubMed ID: 35935579 [TBL] [Abstract][Full Text] [Related]
9. Subtype classification based on t cell proliferation-related regulator genes and risk model for predicting outcomes of lung adenocarcinoma. Yang Q; Zhu W; Gong H Front Immunol; 2023; 14():1148483. PubMed ID: 37077919 [TBL] [Abstract][Full Text] [Related]
10. Development of a copper metabolism-related gene signature in lung adenocarcinoma. Chang W; Li H; Zhong L; Zhu T; Chang Z; Ou W; Wang S Front Immunol; 2022; 13():1040668. PubMed ID: 36524120 [TBL] [Abstract][Full Text] [Related]
11. An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma. Wu Y; Li K; Liang S; Lou X; Li Y; Xu D; Wu Y; Wang Y; Cui W Respir Res; 2023 May; 24(1):142. PubMed ID: 37259066 [TBL] [Abstract][Full Text] [Related]
12. Construction and validation of a prognostic model for lung adenocarcinoma based on endoplasmic reticulum stress-related genes. Li F; Niu Y; Zhao W; Yan C; Qi Y Sci Rep; 2022 Nov; 12(1):19857. PubMed ID: 36400857 [TBL] [Abstract][Full Text] [Related]
13. Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma. Liu J; Li H; Zhang N; Dong Q; Liang Z Curr Med Chem; 2024; 31(25):4034-4055. PubMed ID: 38685772 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of polyamines metabolism-associated gene signatures to predict prognosis and immunotherapy response in lung adenocarcinoma. Wang N; Chai M; Zhu L; Liu J; Yu C; Huang X Front Immunol; 2023; 14():1070953. PubMed ID: 37334367 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive analysis of a novel signature incorporating lipid metabolism and immune-related genes for assessing prognosis and immune landscape in lung adenocarcinoma. Wang Y; Xu J; Fang Y; Gu J; Zhao F; Tang Y; Xu R; Zhang B; Wu J; Fang Z; Li Y Front Immunol; 2022; 13():950001. PubMed ID: 36091041 [TBL] [Abstract][Full Text] [Related]
16. Novel immunogenic cell death-related risk signature to predict prognosis and immune microenvironment in lung adenocarcinoma. Li Q; Tang Y; Wang T; Zhu J; Zhou Y; Shi J J Cancer Res Clin Oncol; 2023 Jan; 149(1):307-323. PubMed ID: 36575346 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive analysis of the immunogenic cell death-related signature for predicting prognosis and immunotherapy efficiency in patients with lung adenocarcinoma. Cui Y; Li Y; Long S; Xu Y; Liu X; Sun Z; Sun Y; Hu J; Li X BMC Med Genomics; 2023 Aug; 16(1):184. PubMed ID: 37553698 [TBL] [Abstract][Full Text] [Related]
18. Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma. Fan T; Pan S; Yang S; Hao B; Zhang L; Li D; Geng Q Front Immunol; 2021; 12():693062. PubMed ID: 34497605 [TBL] [Abstract][Full Text] [Related]
19. The prognostic value of immune escape-related genes in lung adenocarcinoma. Jia HR; Li WC; Wu L Transl Cancer Res; 2024 Jun; 13(6):2647-2661. PubMed ID: 38988926 [TBL] [Abstract][Full Text] [Related]
20. Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response. Zhang L; Zhang X; Guan M; Zeng J; Yu F; Lai F Respir Res; 2024 May; 25(1):206. PubMed ID: 38745285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]