These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38186671)

  • 1. EEG-controlled tele-grasping for undefined objects.
    Kim M; Choi MS; Jang GR; Bae JH; Park HS
    Front Neurorobot; 2023; 17():1293878. PubMed ID: 38186671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks.
    Ai J; Meng J; Mai X; Zhu X
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grip Force Control During Virtual Interaction With Deformable and Rigid Objects Via a Haptic Gripper.
    Milstein A; Alyagon L; Nisky I
    IEEE Trans Haptics; 2021; 14(3):564-576. PubMed ID: 33606636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teleoperation control of a wheeled mobile robot based on Brain-machine Interface.
    Zhao SN; Cui Y; He Y; He Z; Diao Z; Peng F; Cheng C
    Math Biosci Eng; 2023 Jan; 20(2):3638-3660. PubMed ID: 36899597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.
    Choi B; Jo S
    PLoS One; 2013; 8(9):e74583. PubMed ID: 24023953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular Shell Gripper for Handling Food Products.
    Wang Z; Kanegae R; Hirai S
    Soft Robot; 2021 Oct; 8(5):542-554. PubMed ID: 32822254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive critic neural network-based object grasping control using a three-finger gripper.
    Jagannathan S; Galan G
    IEEE Trans Neural Netw; 2004 Mar; 15(2):395-407. PubMed ID: 15384532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (MARGOT) Monocular Camera-Based Robot Grasping Strategy for Metallic Objects.
    Veiga Almagro C; Muñoz Orrego RA; García González Á; Matheson E; Marín Prades R; Di Castro M; Ferre Pérez M
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.
    Freud E; Macdonald SN; Chen J; Quinlan DJ; Goodale MA; Culham JC
    Cortex; 2018 Jan; 98():34-48. PubMed ID: 28431740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm.
    Chen X; Huang X; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3140-3147. PubMed ID: 33196442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SurgGrip: a compliant 3D printed gripper for vision-based grasping of surgical thin instruments.
    Kim J; Mishra AK; Radi L; Bashir MZ; Nocentini O; Cavallo F
    Meccanica; 2022; 57(11):2733-2748. PubMed ID: 36340293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.