These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3818674)

  • 1. The effect of the interface on the bone stresses beneath tibial components.
    Garg A; Walker PS
    J Biomech; 1986; 19(12):957-67. PubMed ID: 3818674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epiphyseal-based designs for tibial plateau components--II. Stress analysis in the sagittal plane.
    Beaupré GS; Vasu R; Carter DR; Schurman DJ
    J Biomech; 1986; 19(8):663-73. PubMed ID: 3771588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement.
    Rakotomanana RL; Leyvraz PF; Curnier A; Heegaard JH; Rubin PJ
    J Biomech; 1992 Dec; 25(12):1413-24. PubMed ID: 1491019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative evaluation of tibial component designs of total knee prostheses.
    Lewis JL; Askew MJ; Jaycox DP
    J Bone Joint Surg Am; 1982 Jan; 64(1):129-35. PubMed ID: 7054194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of model variables and fixation post length effects on stresses around a prosthesis in the proximal tibia.
    Askew MJ; Lewis JL
    J Biomech Eng; 1981 Nov; 103(4):239-45. PubMed ID: 7311489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of the tibial component in total knee replacement.
    Bartel DL; Burstein AH; Santavicca EA; Insall JN
    J Bone Joint Surg Am; 1982 Sep; 64(7):1026-33. PubMed ID: 7118966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of contact mechanics for composite cushion knee joint replacements.
    Stewart T; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 1998; 212(1):1-10. PubMed ID: 9529932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a cement-bone composite layer and prosthesis geometry on stresses in a prosthetically resurfaced tibia.
    Shrivastava SC; Ahmed AM; Shirazi-Adl A; Burke DL
    J Biomed Mater Res; 1982 Nov; 16(6):929-49. PubMed ID: 7174717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epiphyseal-based designs for tibial plateau components--I. Stress analysis in the frontal plane.
    Vasu R; Carter DR; Schurman DJ; Beaupré GS
    J Biomech; 1986; 19(8):647-62. PubMed ID: 3771587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct.
    Sarathi Kopparti P; Lewis G
    Biomed Mater Eng; 2007; 17(1):19-28. PubMed ID: 17264384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of interface stresses and strains for onlay and inlay unicompartmental tibial components.
    Walker PS; Parakh DS; Chaudhary ME; Wei CS
    J Knee Surg; 2011 Jun; 24(2):109-15. PubMed ID: 21874946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic stress response of the implant/cement interface: an axisymmetric analysis of a knee tibial component.
    Ahmed AM; Tissakht M; Shrivastava SC; Chan K
    J Orthop Res; 1990 May; 8(3):435-47. PubMed ID: 2324861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Forces at the implant-bone interface of condylar knee prosthesis--with special reference to the retention of the posterior cruciate ligament].
    Kurosawa H; Soudry M; Walker PS
    Nihon Seikeigeka Gakkai Zasshi; 1984 Jan; 58(1):11-21. PubMed ID: 6747399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customized surface-guided knee implant: Contact analysis and experimental test.
    Khosravipour I; Pejhan S; Luo Y; Wyss UP
    Proc Inst Mech Eng H; 2018 Jan; 232(1):90-100. PubMed ID: 29191076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the tibial component regarding impact load.
    Yoshino K; Koga Y; Segawa H; Ueno Y; Tanabe Y; Endo N; Omori G
    Clin Orthop Relat Res; 2004 Jun; (423):172-7. PubMed ID: 15232445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches to the interface problem in total joint arthroplasty.
    Walker PS; Onchi K; Kurosawa H; Rodger RF
    Clin Orthop Relat Res; 1984; (182):99-108. PubMed ID: 6692631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial in vitro stability of the tibial component in a canine model of cementless total knee replacement.
    Sumner DR; Berzins A; Turner TM; Igloria R; Natarajan RN
    J Biomech; 1994 Jul; 27(7):929-39. PubMed ID: 8063843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.