BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 38186852)

  • 1. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders.
    Gahlawat S; Nanda V; Shreiber DI
    Matrix Biol Plus; 2024 Feb; 21():100139. PubMed ID: 38186852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.
    Qiu Y; Mekkat A; Yu H; Yigit S; Hamaia S; Farndale RW; Kaplan DL; Lin YS; Brodsky B
    J Struct Biol; 2018 Sep; 203(3):255-262. PubMed ID: 29758270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular underpinnings of integrin binding to collagen-mimetic peptides containing vascular Ehlers-Danlos syndrome-associated substitutions.
    Hoop CL; Kemraj AP; Wang B; Gahlawat S; Godesky M; Zhu J; Warren HR; Case DA; Shreiber DI; Baum J
    J Biol Chem; 2019 Sep; 294(39):14442-14453. PubMed ID: 31406019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding delay and structural perturbations caused by type IV collagen natural interruptions and nearby Gly missense mutations.
    Hwang ES; Brodsky B
    J Biol Chem; 2012 Feb; 287(6):4368-75. PubMed ID: 22179614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Natural Interruption Displays Higher Global Stability and Local Conformational Flexibility than a Similar Gly Mutation Sequence in Collagen Mimic Peptides.
    Sun X; Chai Y; Wang Q; Liu H; Wang S; Xiao J
    Biochemistry; 2015 Oct; 54(39):6106-13. PubMed ID: 26352622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
    Brodsky B; Thiagarajan G; Madhan B; Kar K
    Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure of the collagen triple helix.
    Brodsky B; Persikov AV
    Adv Protein Chem; 2005; 70():301-39. PubMed ID: 15837519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common interruptions in the repeating tripeptide sequence of non-fibrillar collagens: sequence analysis and structural studies on triple-helix peptide models.
    Thiagarajan G; Li Y; Mohs A; Strafaci C; Popiel M; Baum J; Brodsky B
    J Mol Biol; 2008 Feb; 376(3):736-48. PubMed ID: 18187152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens.
    Mienaltowski MJ; Gonzales NL; Beall JM; Pechanec MY
    Adv Exp Med Biol; 2021; 1348():5-43. PubMed ID: 34807414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence.
    Long CG; Braswell E; Zhu D; Apigo J; Baum J; Brodsky B
    Biochemistry; 1993 Nov; 32(43):11688-95. PubMed ID: 8218237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen model peptides: Sequence dependence of triple-helix stability.
    Persikov AV; Ramshaw JA; Brodsky B
    Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical elasticity of proline-rich and hydroxyproline-rich collagen-like triple-helices studied using steered molecular dynamics.
    Ghanaeian A; Soheilifard R
    J Mech Behav Biomed Mater; 2018 Oct; 86():105-112. PubMed ID: 29986285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.
    Xiao J; Madhan B; Li Y; Brodsky B; Baum J
    Biophys J; 2011 Jul; 101(2):449-58. PubMed ID: 21767498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first census of collagen interruptions: collagen's own stutters and stammers.
    Bella J
    J Struct Biol; 2014 Jun; 186(3):438-50. PubMed ID: 24709580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association.
    Hwang ES; Thiagarajan G; Parmar AS; Brodsky B
    Protein Sci; 2010 May; 19(5):1053-64. PubMed ID: 20340134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial collagen-like proteins that form triple-helical structures.
    Yu Z; An B; Ramshaw JA; Brodsky B
    J Struct Biol; 2014 Jun; 186(3):451-61. PubMed ID: 24434612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope.
    Shah NK; Sharma M; Kirkpatrick A; Ramshaw JA; Brodsky B
    Biochemistry; 1997 May; 36(19):5878-83. PubMed ID: 9153429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix.
    Bella J; Liu J; Kramer R; Brodsky B; Berman HM
    J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.
    Bhate M; Wang X; Baum J; Brodsky B
    Biochemistry; 2002 May; 41(20):6539-47. PubMed ID: 12009919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.