BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38186958)

  • 1. Development of metasurface based hyperthermia lens applicator for heating of cancerous tissues.
    Sharma N; Singh HS; Khanna R; Kaur A; Agarwal M
    Biomed Eng Lett; 2024 Jan; 14(1):1-12. PubMed ID: 38186958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array.
    Yildiz G; Farhat I; Farrugia L; Bonello J; Zarb-Adami K; Sammut CV; Yilmaz T; Akduman I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators.
    Müller J; Hartmann J; Bert C
    Phys Med Biol; 2016 Apr; 61(7):2646-64. PubMed ID: 26976046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals.
    Faridi P; Bossmann SH; Prakash P
    Biomed Phys Eng Express; 2020 Jan; 6(1):. PubMed ID: 32999735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband microwave spiral applicator (105-125 MHz) for
    Walter J; Hader M; Sengedorj A; Fietkau R; Frey B; Gaipl US
    Int J Hyperthermia; 2023; 40(1):2265590. PubMed ID: 37813393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the ESHO-QA guidelines for determining the performance of the LCA superficial hyperthermia heating system.
    Carrapiço-Seabra C; De Lazzari M; Ameziane A; van Rhoon GC; Dobšícek Trefná H; Curto S
    Int J Hyperthermia; 2023; 40(1):2272578. PubMed ID: 37879635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.
    Takook P; Persson M; Gellermann J; Trefná HD
    Int J Hyperthermia; 2017 Jun; 33(4):387-400. PubMed ID: 28064557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotationally Adjustable Hyperthermia Applicators: A Computational Comparative Study of Circular and Linear Array Applicators.
    Yildiz G; Yilmaz T; Akduman I
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36359518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental study of conductive heating using a concentric double-electrode applicator.
    Tanaka T; Morimoto T; Kinouchi Y; Iritani T; Monden Y
    Res Exp Med (Berl); 1995; 195(5):255-64. PubMed ID: 8578001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online feedback focusing algorithm for hyperthermia cancer treatment.
    Cheng KS; Stakhursky V; Stauffer P; Dewhirst M; Das SK
    Int J Hyperthermia; 2007 Nov; 23(7):539-54. PubMed ID: 17943551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease.
    Juang T; Stauffer PR; Neuman DG; Schlorff JL
    Int J Hyperthermia; 2006 Nov; 22(7):527-44. PubMed ID: 17079212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.
    Kouloulias V; Karanasiou I; Giamalaki M; Matsopoulos G; Kouvaris J; Kelekis N; Uzunoglu N
    Int J Hyperthermia; 2015 Feb; 31(1):23-32. PubMed ID: 25578580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.
    Curto S; Prakash P
    Int J Hyperthermia; 2015; 31(7):726-36. PubMed ID: 26368277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
    Zubair M; Adams MS; Diederich CJ
    Int J Hyperthermia; 2021 Aug; 38(1):1188-1204. PubMed ID: 34376103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.