These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38187083)

  • 1. Pentanuclear iron complex for water oxidation: spectroscopic analysis of reactive intermediates in solution and catalyst immobilization into the MOF-based photoanode.
    Ezhov R; Bury G; Maximova O; Grant ED; Kondo M; Masaoka S; Pushkar Y
    J Catal; 2024 Jan; 429():. PubMed ID: 38187083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoexcitation of Fe
    Ezhov R; Ravari AK; Palenik M; Loomis A; Meira DM; Savikhin S; Pushkar Y
    ChemSusChem; 2023 Mar; 16(5):e202202124. PubMed ID: 36479638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst.
    Hong YH; Jung J; Nakagawa T; Sharma N; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2019 Apr; 141(16):6748-6754. PubMed ID: 30943724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms.
    Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T
    Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis.
    Dismukes GC; Brimblecombe R; Felton GA; Pryadun RS; Sheats JE; Spiccia L; Swiegers GF
    Acc Chem Res; 2009 Dec; 42(12):1935-43. PubMed ID: 19908827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical water oxidation reaction by dinuclear Re(V) oxo complexes with a 1,4-benzoquinone core
    Shee U; Sinha D; Mondal S; Rajak KK
    Dalton Trans; 2024 May; 53(19):8254-8263. PubMed ID: 38656393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxo-bridged dinuclear manganese(III) and -(IV) complexes of pyridyl donor tripod ligands: combined effects of steric substitution and chelate ring size variations on structural, spectroscopic, and electrochemical properties.
    Gultneh Y; Yisgedu TB; Tesema YT; Butcher RJ
    Inorg Chem; 2003 Mar; 42(6):1857-67. PubMed ID: 12639118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pentanuclear iron catalyst designed for water oxidation.
    Okamura M; Kondo M; Kuga R; Kurashige Y; Yanai T; Hayami S; Praneeth VK; Yoshida M; Yoneda K; Kawata S; Masaoka S
    Nature; 2016 Feb; 530(7591):465-8. PubMed ID: 26863188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-potential-step chronocoulospectrometry for electrocatalytic water oxidation by a mononuclear ruthenium aquo complex immobilized on a mesoporous ITO electrode.
    Tsubonouchi Y; Honta J; Sato T; Mohamed EA; Zahran ZN; Saito K; Yui T; Yagi M
    Dalton Trans; 2020 Feb; 49(5):1416-1423. PubMed ID: 31913399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water oxidation catalysed by iron complex of
    To WP; Wai-Shan Chow T; Tse CW; Guan X; Huang JS; Che CM
    Chem Sci; 2015 Oct; 6(10):5891-5903. PubMed ID: 29861914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second Coordination Sphere Effect Shifts CO
    Amanullah S; Gotico P; Sircoglou M; Leibl W; Llansola-Portoles MJ; Tibiletti T; Quaranta A; Halime Z; Aukauloo A
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202314439. PubMed ID: 38050770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex.
    Bera M; Kaur S; Keshari K; Moonshiram D; Paria S
    Inorg Chem; 2022 Dec; 61(51):21035-21046. PubMed ID: 36517453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts.
    Rosser TE; Gross MA; Lai YH; Reisner E
    Chem Sci; 2016 Jul; 7(7):4024-4035. PubMed ID: 30155045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Oxidation at Neutral pH using a Highly Active Copper-Based Electrocatalyst.
    Younus HA; Zhang Y; Vandichel M; Ahmad N; Laasonen K; Verpoort F; Zhang C; Zhang S
    ChemSusChem; 2020 Sep; 13(18):5088-5099. PubMed ID: 32667741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.