These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38187474)
1. Decomposing user-defined tasks in a reinforcement learning setup using TextWorld. Petsanis T; Keroglou C; Ch Kapoutsis A; Kosmatopoulos EB; Sirakoulis GC Front Robot AI; 2023; 10():1280578. PubMed ID: 38187474 [TBL] [Abstract][Full Text] [Related]
2. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning. Zhou X; Bai T; Gao Y; Han Y Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807 [TBL] [Abstract][Full Text] [Related]
3. Boosting Reinforcement Learning via Hierarchical Game Playing With State Relay. Liu C; Cong J; Liu G; Jiang G; Xu X; Zhu E IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38648134 [TBL] [Abstract][Full Text] [Related]
4. Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning. Dilokthanakul N; Kaplanis C; Pawlowski N; Shanahan M IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3409-3418. PubMed ID: 30714933 [TBL] [Abstract][Full Text] [Related]
5. Modular deep reinforcement learning from reward and punishment for robot navigation. Wang J; Elfwing S; Uchibe E Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526 [TBL] [Abstract][Full Text] [Related]
6. Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment. de Tinguy D; Van de Maele T; Verbelen T; Dhoedt B Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38248208 [TBL] [Abstract][Full Text] [Related]
7. SLAM algorithm applied to robotics assistance for navigation in unknown environments. Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735 [TBL] [Abstract][Full Text] [Related]
8. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space. Zu L; He X; Yang J; Liu L; Wang W Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108 [TBL] [Abstract][Full Text] [Related]
9. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning. Lee H; Jeong J Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086 [TBL] [Abstract][Full Text] [Related]
10. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation. Wang D; Si W; Luo Y; Wang H; Ma T Network; 2019; 30(1-4):79-106. PubMed ID: 31564179 [TBL] [Abstract][Full Text] [Related]
11. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning. Yu J; Su Y; Liao Y Front Neurorobot; 2020; 14():63. PubMed ID: 33132890 [TBL] [Abstract][Full Text] [Related]
12. Goal-Conditioned Hierarchical Reinforcement Learning With High-Level Model Approximation. Luo Y; Ji T; Sun F; Liu H; Zhang J; Jing M; Huang W IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38300770 [TBL] [Abstract][Full Text] [Related]
13. An Evaluation Methodology for Interactive Reinforcement Learning with Simulated Users. Bignold A; Cruz F; Dazeley R; Vamplew P; Foale C Biomimetics (Basel); 2021 Feb; 6(1):. PubMed ID: 33572399 [TBL] [Abstract][Full Text] [Related]
14. Behavior fusion for deep reinforcement learning. Shi H; Xu M; Hwang KS; Cai BY ISA Trans; 2020 Mar; 98():434-444. PubMed ID: 31543262 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical Reinforcement Learning With Universal Policies for Multistep Robotic Manipulation. Yang X; Ji Z; Wu J; Lai YK; Wei C; Liu G; Setchi R IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4727-4741. PubMed ID: 33646961 [TBL] [Abstract][Full Text] [Related]
16. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving. Eppe M; Nguyen PDH; Wermter S Front Robot AI; 2019; 6():123. PubMed ID: 33501138 [TBL] [Abstract][Full Text] [Related]
17. Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning. Saha T; Saha S; Bhattacharyya P PLoS One; 2020; 15(7):e0235367. PubMed ID: 32614929 [TBL] [Abstract][Full Text] [Related]
18. Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning. Lambert R; Li J; Wu LF; Mahmoudian N Front Robot AI; 2021; 8():739023. PubMed ID: 34616776 [TBL] [Abstract][Full Text] [Related]
19. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments. Mackay AK; Riazuelo L; Montano L Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257 [TBL] [Abstract][Full Text] [Related]
20. Generalization Enhancement of Visual Reinforcement Learning through Internal States. Yang H; Zhu W; Zhu X Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]