BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38187601)

  • 1. Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data.
    Ellis CA; Miller RL; Calhoun VD
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data.
    Ellis CA; Sattiraju A; Miller RL; Calhoun VD
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder by Pretraining Deep Learning Models with Single Channel Sleep Stage Data.
    Ellis CA; Sattiraju A; Miller RL; Calhoun VD
    bioRxiv; 2023 May; ():. PubMed ID: 37398050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures.
    Ellis CA; Sancho ML; Miller RL; Calhoun VD
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CROSS-SAMPLING RATE TRANSFER LEARNING FOR ENHANCED RAW EEG DEEP LEARNING CLASSIFIER PERFORMANCE IN MAJOR DEPRESSIVE DISORDER DIAGNOSIS.
    Ellis CA; Miller RL; Calhoun VD
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-based Schizophrenia Diagnosis.
    Sattiraju A; Ellis CA; Miller RL; Calhoun VD
    bioRxiv; 2023 Oct; ():. PubMed ID: 37398173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS.
    Ellis CA; Sattiraju A; Miller RL; Calhoun VD
    bioRxiv; 2023 Feb; ():. PubMed ID: 36909628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data augmentation for deep-learning-based electroencephalography.
    Lashgari E; Liang D; Maoz U
    J Neurosci Methods; 2020 Dec; 346():108885. PubMed ID: 32745492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach.
    Sancho ML; Ellis CA; Miller RL; Calhoun VD
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG.
    Pei Y; Luo Z; Yan Y; Yan H; Jiang J; Li W; Xie L; Yin E
    Front Hum Neurosci; 2021; 15():645952. PubMed ID: 33776673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder.
    Carrle FP; Hollenbenders Y; Reichenbach A
    Front Neurosci; 2023; 17():1219133. PubMed ID: 37849893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DiffMDD: A Diffusion-Based Deep Learning Framework for MDD Diagnosis Using EEG.
    Wang Y; Zhao S; Jiang H; Li S; Luo B; Li T; Pan G
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():728-738. PubMed ID: 38294930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces.
    Ko W; Jeon E; Jeong S; Phyo J; Suk HI
    Front Hum Neurosci; 2021; 15():643386. PubMed ID: 34140883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis.
    Watts D; Pulice RF; Reilly J; Brunoni AR; Kapczinski F; Passos IC
    Transl Psychiatry; 2022 Aug; 12(1):332. PubMed ID: 35961967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of medical image data augmentation techniques for deep learning applications.
    Chlap P; Min H; Vandenberg N; Dowling J; Holloway L; Haworth A
    J Med Imaging Radiat Oncol; 2021 Aug; 65(5):545-563. PubMed ID: 34145766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task.
    Lashgari E; Ott J; Connelly A; Baldi P; Maoz U
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734
    [No Abstract]   [Full Text] [Related]  

  • 19. TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG.
    Supratak A; Guo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():641-644. PubMed ID: 33018069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depressive Disorder Recognition Based on Frontal EEG Signals and Deep Learning.
    Xu Y; Zhong H; Ying S; Liu W; Chen G; Luo X; Li G
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.