These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38187764)

  • 1. Sculpting conducting nanopore size and shape through
    Berhanu S; Majumder S; Müntener T; Whitehouse J; Berner C; Bera AK; Kang A; Liang B; Khan GN; Sankaran B; Tamm LK; Brockwell DJ; Hiller S; Radford SE; Baker D; Vorobieva AA
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sculpting conducting nanopore size and shape through de novo protein design.
    Berhanu S; Majumder S; Müntener T; Whitehouse J; Berner C; Bera AK; Kang A; Liang B; Khan N; Sankaran B; Tamm LK; Brockwell DJ; Hiller S; Radford SE; Baker D; Vorobieva AA
    Science; 2024 Jul; 385(6706):282-288. PubMed ID: 39024453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationale in Custom Design of Transmembrane β-Barrel Pores.
    Vorobieva AA
    Methods Mol Biol; 2024; 2778():345-366. PubMed ID: 38478288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally Active Synthetic α-Helical Pores.
    Krishnan R S; Firzan Ca N; Mahendran KR
    Acc Chem Res; 2024 Jul; 57(13):1790-1802. PubMed ID: 38875523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametrically guided design of beta barrels and transmembrane nanopores using deep learning.
    Kim DE; Watson JL; Juergens D; Majumder S; Gerben SR; Kang A; Bera AK; Li X; Baker D
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo design of transmembrane β barrels.
    Vorobieva AA; White P; Liang B; Horne JE; Bera AK; Chow CM; Gerben S; Marx S; Kang A; Stiving AQ; Harvey SR; Marx DC; Khan GN; Fleming KG; Wysocki VH; Brockwell DJ; Tamm LK; Radford SE; Baker D
    Science; 2021 Feb; 371(6531):. PubMed ID: 33602829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial beta-barrels.
    Sakai N; Mareda J; Matile S
    Acc Chem Res; 2008 Oct; 41(10):1354-65. PubMed ID: 18590283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of transmembrane pores.
    Xu C; Lu P; Gamal El-Din TM; Pei XY; Johnson MC; Uyeda A; Bick MJ; Xu Q; Jiang D; Bai H; Reggiano G; Hsia Y; Brunette TJ; Dou J; Ma D; Lynch EM; Boyken SE; Huang PS; Stewart L; DiMaio F; Kollman JM; Luisi BF; Matsuura T; Catterall WA; Baker D
    Nature; 2020 Sep; 585(7823):129-134. PubMed ID: 32848250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide.
    Shimizu K; Mijiddorj B; Usami M; Mizoguchi I; Yoshida S; Akayama S; Hamada Y; Ohyama A; Usui K; Kawamura I; Kawano R
    Nat Nanotechnol; 2022 Jan; 17(1):67-75. PubMed ID: 34811552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Free Expression of
    Fujita S; Kawamura I; Kawano R
    ACS Nano; 2023 Feb; 17(4):3358-3367. PubMed ID: 36731872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-tunable transmembrane nanopores assembled from decomposable molecular templates.
    Su Z; Chen T; Liu X; Kang X
    Biosens Bioelectron; 2024 Sep; 267():116780. PubMed ID: 39277918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations.
    Chou YC; Chen J; Lin CY; Drndić M
    J Chem Phys; 2021 Mar; 154(10):105102. PubMed ID: 33722020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.