These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38187928)
1. Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification. Husseini AA; Yazdani AM; Ghadiri F; Şişman A Eng Life Sci; 2024 Jan; 24(1):e2300230. PubMed ID: 38187928 [TBL] [Abstract][Full Text] [Related]
2. Surface acoustic wave concentration of particle and bioparticle suspensions. Li H; Friend JR; Yeo LY Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412 [TBL] [Abstract][Full Text] [Related]
3. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
4. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Rogers PR; Friend JR; Yeo LY Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070 [TBL] [Abstract][Full Text] [Related]
5. Piezoelectric Microchip for Cell Lysis through Cell-Microparticle Collision within a Microdroplet Driven by Surface Acoustic Wave Oscillation. Wang S; Lv X; Su Y; Fan Z; Fang W; Duan J; Zhang S; Ma B; Liu F; Chen H; Geng Z; Liu H Small; 2019 Mar; 15(9):e1804593. PubMed ID: 30690881 [TBL] [Abstract][Full Text] [Related]
6. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
7. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Collins DJ; Ma Z; Ai Y Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956 [TBL] [Abstract][Full Text] [Related]
8. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow. Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414 [TBL] [Abstract][Full Text] [Related]
9. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
10. Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review. Mazalan MB; Noor AM; Wahab Y; Yahud S; Zaman WSWK Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056195 [TBL] [Abstract][Full Text] [Related]
11. Acoustothermal heating of polydimethylsiloxane microfluidic system. Ha BH; Lee KS; Destgeer G; Park J; Choung JS; Jung JH; Shin JH; Sung HJ Sci Rep; 2015 Jul; 5():11851. PubMed ID: 26138310 [TBL] [Abstract][Full Text] [Related]
12. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271 [TBL] [Abstract][Full Text] [Related]
13. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499 [TBL] [Abstract][Full Text] [Related]
14. In-droplet cell lysis of AC16 human cardiomyocyte cells Trujillo RM; Almanza G; Sanchez-Saldaña D; Rosand Ø; Høydal M; Fernandino M; Dorao CA Lab Chip; 2023 Nov; 23(22):4773-4782. PubMed ID: 37822298 [TBL] [Abstract][Full Text] [Related]
15. Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips. Iranmanesh I; Ohlin M; Ramachandraiah H; Ye S; Russom A; Wiklund M Biomed Microdevices; 2016 Aug; 18(4):71. PubMed ID: 27444649 [TBL] [Abstract][Full Text] [Related]
16. Virtual membrane for filtration of particles using surface acoustic waves (SAW). Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086 [TBL] [Abstract][Full Text] [Related]
17. Capillary-based, multifunctional manipulation of particles and fluids Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708 [TBL] [Abstract][Full Text] [Related]
18. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
19. Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array. Wei W; Wang Z; Wang B; Pang W; Yang Q; Duan X Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920584 [TBL] [Abstract][Full Text] [Related]
20. Femtosecond Laser Micromachining of the Mask for Acoustofluidic Device Preparation. Wang Y; Qian J ACS Omega; 2023 Feb; 8(8):7838-7844. PubMed ID: 36873004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]