These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 3818820)
1. General reversed-phase high-performance liquid chromatographic method for the separation of drugs using triethylamine as a competing base. Roos RW; Lau-Cam CA J Chromatogr; 1986 Dec; 370(3):403-18. PubMed ID: 3818820 [TBL] [Abstract][Full Text] [Related]
2. High perfomance liquid chromatography in pharmaceutical analyses. Nikolin B; Imamović B; Medanhodzić-Vuk S; Sober M Bosn J Basic Med Sci; 2004 May; 4(2):5-9. PubMed ID: 15629016 [TBL] [Abstract][Full Text] [Related]
3. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
4. Investigation on liquid chromatographic separation of basic compounds using silica column with aqueous/organic mobile phase containing triethylamine and acetic acid. Wu AB; Huang MC; Ho HO; Yeh GC; Sheu MT Biomed Chromatogr; 2004 Sep; 18(7):443-9. PubMed ID: 15340969 [TBL] [Abstract][Full Text] [Related]
5. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. Fernández-Navarro JJ; García-Álvarez-Coque MC; Ruiz-Ángel MJ J Chromatogr A; 2011 Jan; 1218(3):398-407. PubMed ID: 21176907 [TBL] [Abstract][Full Text] [Related]
6. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases. Petruczynik A J Chromatogr Sci; 2012 Apr; 50(4):287-93. PubMed ID: 22368114 [TBL] [Abstract][Full Text] [Related]
7. High-pressure liquid chromatography of drugs. An evaluation of an octadecylsilane stationary phase. Twitchett PJ; Moffat AC J Chromatogr; 1975 Aug; 111(1):149-57. PubMed ID: 239959 [TBL] [Abstract][Full Text] [Related]
8. Reversed-phase liquid chromatographic separation of antiretroviral drugs on a monolithic column using ionic liquids as mobile phase additives. Nageswara Rao R; Ramachandra B; Mastan Vali R J Sep Sci; 2011 Mar; 34(5):500-7. PubMed ID: 21280213 [TBL] [Abstract][Full Text] [Related]
9. Response surface methodology for the determination of the design space of enantiomeric separations on cinchona-based zwitterionic chiral stationary phases by high performance liquid chromatography. Hanafi RS; Lämmerhofer M J Chromatogr A; 2018 Jan; 1534():55-63. PubMed ID: 29279137 [TBL] [Abstract][Full Text] [Related]
10. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445 [TBL] [Abstract][Full Text] [Related]
11. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18). Kośliński P; Jarzemski P; Markuszewski MJ; Kaliszan R J Pharm Biomed Anal; 2014 Mar; 91():37-45. PubMed ID: 24412699 [TBL] [Abstract][Full Text] [Related]
12. Study of short polystyrene monolith-fritted micro-liquid chromatography columns for analysis of neutral and basic compounds. Legido-Quigley C; Smith NW J Chromatogr A; 2004 Jul; 1042(1-2):61-8. PubMed ID: 15296389 [TBL] [Abstract][Full Text] [Related]
13. Optimization of conditions for the simultaneous separation of ten tryptophan metabolites using reversed-phase high-performance liquid chromatography. Chuang CZ; Ragan FA; Prasad C J Chromatogr; 1990 Dec; 534():13-21. PubMed ID: 2094700 [TBL] [Abstract][Full Text] [Related]
14. Comparison of performance of C18 monolithic rod columns and conventional C18 particle-packed columns in liquid chromatographic determination of Estrogel and Ketoprofen gel. Nováková L; Matysová L; Solichová D; Koupparis MA; Solich P J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Dec; 813(1-2):191-7. PubMed ID: 15556533 [TBL] [Abstract][Full Text] [Related]
15. High-performance liquid chromatographic analysis of basic drugs on silica columns using non-aqueous ionic eluents. I. Factors influencing retention, peak shape and detector response. Flanagan RJ; Jane I J Chromatogr; 1985 Apr; 323(2):173-89. PubMed ID: 2987280 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting the ion-pair chromatography of water-soluble vitamins. Dong MW; Lepore J; Tarumoto T J Chromatogr; 1988 Jun; 442():81-95. PubMed ID: 3417836 [TBL] [Abstract][Full Text] [Related]
17. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Han SY; Liang C; Zou K; Qiao JQ; Lian HZ; Ge X Talanta; 2012 Nov; 101():64-70. PubMed ID: 23158292 [TBL] [Abstract][Full Text] [Related]
18. 1-Hexyl-3-methyl imidazolium tetrafluoroborate: an efficient column enhancer for the separation of basic drugs by reversed-phase liquid chromatography. Fernández-Navarro JJ; Torres-Lapasió JR; Ruiz-Ángel MJ; García-Álvarez-Coque MC J Chromatogr A; 2012 Oct; 1258():168-74. PubMed ID: 22944385 [TBL] [Abstract][Full Text] [Related]
19. Macroscale high-performance liquid chromatographic separation and instrumental identification of components of diethylaminoethyl murine epidermal growth factor. O'Keefe JH; Sharry LF; Jones AJ J Chromatogr; 1984 Dec; 336(1):73-85. PubMed ID: 6335514 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a photodiode array/HPLC-based system for the detection and quantitation of basic drugs in postmortem blood. Koves EM; Wells J J Forensic Sci; 1992 Jan; 37(1):42-60. PubMed ID: 1545212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]