These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38188266)

  • 1. Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.
    Anker S; McKechnie D; Mulheran P; Sefcik J; Johnston K
    Cryst Growth Des; 2024 Jan; 24(1):143-158. PubMed ID: 38188266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins.
    Glova AD; Volgin IV; Nazarychev VM; Larin SV; Lyulin SV; Gurtovenko AA
    RSC Adv; 2019 Nov; 9(66):38834-38847. PubMed ID: 35540183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes).
    Barbosa NSV; Zhang Y; Lima ERA; Tavares FW; Maginn EJ
    J Mol Model; 2017 Jun; 23(6):194. PubMed ID: 28550376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against Experimental Osmotic Coefficient Data for Small Drug-Like Molecules.
    Zhu S
    J Chem Inf Model; 2019 Oct; 59(10):4239-4247. PubMed ID: 31557024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarizable Force Field with a σ-Hole for Liquid and Aqueous Bromomethane.
    Adluri AN; Murphy JN; Tozer T; Rowley CN
    J Phys Chem B; 2015 Oct; 119(42):13422-32. PubMed ID: 26419599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene.
    Fu CF; Tian SX
    J Chem Theory Comput; 2011 Jul; 7(7):2240-52. PubMed ID: 26606493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of structure and dynamics of organic molecular crystals.
    Nemkevich A; Bürgi HB; Spackman MA; Corry B
    Phys Chem Chem Phys; 2010 Dec; 12(45):14916-29. PubMed ID: 20944862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAFF-Based Polarizable Force Field Development and Validation for Ionic Liquids.
    Wang N; Maginn EJ
    J Phys Chem B; 2024 Jan; 128(3):871-881. PubMed ID: 38227791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.
    Hu Z; Jiang J
    J Comput Chem; 2010 Jan; 31(2):371-80. PubMed ID: 19479737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.
    Caleman C; van Maaren PJ; Hong M; Hub JS; Costa LT; van der Spoel D
    J Chem Theory Comput; 2012 Jan; 8(1):61-74. PubMed ID: 22241968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Limits of the Generalized CHARMM and AMBER Force Fields through Predictions of Hydration Free Energy of Small Molecules.
    Chakravorty A; Hussain A; Cervantes LF; Lai TT; Brooks CL
    J Chem Inf Model; 2024 May; 64(10):4089-4101. PubMed ID: 38717640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Monovalent Salts on α-Glycine Crystal Growth from Aqueous Solution: Molecular Dynamics Simulations at Constant Supersaturation Conditions.
    Elts E; Luxenburger F; Briesen H
    J Phys Chem B; 2021 Oct; 125(42):11732-11741. PubMed ID: 34643406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity prediction of Pongamia pinnata (Karanja) oil by molecular dynamics simulation using GAFF and OPLS force field.
    Sneha E; Revikumar A; Singh JY; Thampi AD; Rani S
    J Mol Graph Model; 2020 Dec; 101():107764. PubMed ID: 33032203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio and force field molecular dynamics study of bulk organophosphorus and organochlorine liquid structures.
    Priest CW; Greathouse JA; Kinnan MK; Burton PD; Rempe SB
    J Chem Phys; 2021 Feb; 154(8):084503. PubMed ID: 33639727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular simulations of membranes: physical properties from different force fields.
    Siu SW; Vácha R; Jungwirth P; Böckmann RA
    J Chem Phys; 2008 Mar; 128(12):125103. PubMed ID: 18376978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport Properties of Waxy Crude Oil: A Molecular Dynamics Simulation Study.
    Chen X; Hou L; Wei X; Bedrov D
    ACS Omega; 2020 Aug; 5(30):18557-18564. PubMed ID: 32775856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.