BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38188268)

  • 1. Pb Removal Efficiency by Calcium Carbonates: Biogenic versus Abiogenic Materials.
    Roza-Llera A; Di Lorenzo F; Churakov SV; Jiménez A; Fernández-Díaz L
    Cryst Growth Des; 2024 Jan; 24(1):79-92. PubMed ID: 38188268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replacement of Calcite (CaCO
    Yuan K; Lee SS; De Andrade V; Sturchio NC; Fenter P
    Environ Sci Technol; 2016 Dec; 50(23):12984-12991. PubMed ID: 27767299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming cerussite to pyromorphite by immobilising Pb(II) using hydroxyapatite and Pseudomonas rhodesiae.
    Li J; Tian X; Bai R; Xiao X; Yang F; Zhao F
    Chemosphere; 2022 Jan; 287(Pt 2):132235. PubMed ID: 34826926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-removal of Pb, Cu, and Ni from solutions as nano-carbonates using a plant-derived urease enzyme-urea mixture.
    Abdel-Gawwad HA; Hussein HS; Mohammed MS
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30741-30754. PubMed ID: 32472505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of calcium carbonates with lead in aqueous solutions.
    Godelitsas A; Astilleros JM; Hallam K; Harissopoulos S; Putnis A
    Environ Sci Technol; 2003 Aug; 37(15):3351-60. PubMed ID: 12966981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccessibility of lead in high carbonate soils.
    Denys S; Caboche J; Tack K; Delalain P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1331-9. PubMed ID: 17654152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Divalent Cations (Cu, Zn, Pb, Cd, and Sr) on Microbially Induced Calcium Carbonate Precipitation and Mineralogical Properties.
    Kim Y; Kwon S; Roh Y
    Front Microbiol; 2021; 12():646748. PubMed ID: 33897660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils.
    Ottosen LM; Hansen HK; Ribeiro AB; Villumsen A
    J Hazard Mater; 2001 Aug; 85(3):291-9. PubMed ID: 11489529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating immobilization efficiency of Pb in solution and loess soil using bio-inspired carbonate precipitation.
    Xue ZF; Cheng WC; Xie YX; Wang L; Hu W; Zhang B
    Environ Pollut; 2023 Apr; 322():121218. PubMed ID: 36764377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies.
    Singh SP; Ma LQ; Hendry MJ
    J Hazard Mater; 2006 Aug; 136(3):654-62. PubMed ID: 16487656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing sorption of trace elements in contaminated waters onto ground nut shells.
    Figueira P; Vale C; Pereira E
    J Environ Manage; 2022 Apr; 308():114618. PubMed ID: 35101806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium carbonate as sorbent for lead removal from wastewaters.
    Fiorito E; Porcedda GE; Brundu L; Passiu C; Atzei D; Ennas G; Elsener B; Fantauzzi M; Rossi A
    Chemosphere; 2022 Jun; 296():133897. PubMed ID: 35218777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic Calcium Carbonate with Hierarchical Organic-Inorganic Composite Structure Enhancing the Removal of Pb(II) from Wastewater.
    Zhou X; Liu W; Zhang J; Wu C; Ou X; Tian C; Lin Z; Dang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35785-35793. PubMed ID: 28948773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil.
    Wei T; Yashir N; An F; Imtiaz SA; Li X; Li H
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2924-2935. PubMed ID: 34382171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates.
    Muehe EM; Scheer L; Daus B; Kappler A
    Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of weathering product assemblages on Pb bioaccessibility in mine waste: implications for risk management.
    Palumbo-Roe B; Wragg J; Cave MR; Wagner D
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7699-710. PubMed ID: 23381798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils.
    Wang L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2013; 47(23):13502-10. PubMed ID: 24228938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Xanthate Adsorption on Cerussite Surfaces by Pb(II) Activation and Its Effect on Floatability.
    Miao Y; Wen S; Shen Z; Zhang Q; Feng Q
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating CaCO
    Zeng C; Hu H; Feng X; Wang K; Zhang Q
    Chemosphere; 2020 Jun; 249():126227. PubMed ID: 32087456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.