BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38188542)

  • 1. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations.
    Momanyi BM; Zhou YW; Grace-Mercure BK; Temesgen SA; Basharat A; Ning L; Tang L; Gao H; Lin H; Tang H
    Curr Res Struct Biol; 2024; 7():100122. PubMed ID: 38188542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.
    Zhang L; Chen M; Hu X; Deng L
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network.
    Hu X; Zhang P; Liu D; Zhang J; Zhang Y; Dong Y; Fan Y; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38647155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSnoD: identifying potential snoRNA-disease associations based on bounded nuclear norm regularization.
    Sun Z; Huang Q; Yang Y; Li S; Lv H; Zhang Y; Lin H; Ning L
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35817303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSnoDi-MDRF: Identifying snoRNA-Disease Associations Based on Multiple Biological Data by Ranking Framework.
    Zhang W; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3013-3019. PubMed ID: 37030816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints.
    Zhang W; Liu B
    RNA; 2022 Dec; 28(12):1558-1567. PubMed ID: 36192132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrative Heterogeneous Graph Neural Network-Based Method for Multi-Labeled Drug Repurposing.
    Sadeghi S; Lu J; Ngom A
    Front Pharmacol; 2022; 13():908549. PubMed ID: 35873597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph auto-encoder model for miRNA-disease associations prediction.
    Li Z; Li J; Nie R; You ZH; Bao W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 34293850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction.
    Zhao X; Zhao X; Yin M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of lncRNA-Disease Associations
    Li J; Kong M; Wang D; Yang Z; Hao X
    Front Genet; 2021; 12():808962. PubMed ID: 35058974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-view contrastive heterogeneous graph attention network for lncRNA-disease association prediction.
    Zhao X; Wu J; Zhao X; Yin M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification.
    Shi S; Qiao K; Yang S; Wang L; Chen J; Yan B
    Front Neurorobot; 2021; 15():775688. PubMed ID: 34899230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information.
    Liu C; Wu J; Liu W; Hu W
    Neural Netw; 2021 Oct; 142():20-33. PubMed ID: 33964476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks.
    Ma Y; Zhang H; Jin C; Kang C
    Front Genet; 2023; 14():1136672. PubMed ID: 36845380
    [No Abstract]   [Full Text] [Related]  

  • 18. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions.
    Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X
    Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.