These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38188644)

  • 21. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues.
    Wang B; Díaz-Payno PJ; Browe DC; Freeman FE; Nulty J; Burdis R; Kelly DJ
    Acta Biomater; 2021 Jul; 128():130-142. PubMed ID: 33866035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties.
    Bashiri Z; Rajabi Fomeshi M; Ghasemi Hamidabadi H; Jafari D; Alizadeh S; Nazm Bojnordi M; Orive G; Dolatshahi-Pirouz A; Zahiri M; Reis RL; Kundu SC; Gholipourmalekabadi M
    Mater Today Bio; 2023 Jun; 20():100666. PubMed ID: 37273796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs.
    Zhang G; Wang Z; Han F; Jin G; Xu L; Xu H; Su H; Wang H; Le Y; Fu Y; Ju J; Li B; Hou R
    Biotechnol Bioeng; 2021 Oct; 118(10):3787-3798. PubMed ID: 34110009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple and robust 3D bioprinting of full-thickness human skin tissue.
    Liu J; Zhou Z; Zhang M; Song F; Feng C; Liu H
    Bioengineered; 2022 Apr; 13(4):10087-10097. PubMed ID: 35412953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes.
    Li M; Sun L; Liu Z; Shen Z; Cao Y; Han L; Sang S; Wang J
    Biomater Sci; 2023 Mar; 11(7):2461-2477. PubMed ID: 36762551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalizing multi-component bioink with platelet-rich plasma for customized
    Zhao M; Wang J; Zhang J; Huang J; Luo L; Yang Y; Shen K; Jiao T; Jia Y; Lian W; Li J; Wang Y; Lian Q; Hu D
    Mater Today Bio; 2022 Dec; 16():100334. PubMed ID: 35799896
    [No Abstract]   [Full Text] [Related]  

  • 28. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.
    Kim BS; Kwon YW; Kong JS; Park GT; Gao G; Han W; Kim MB; Lee H; Kim JH; Cho DW
    Biomaterials; 2018 Jun; 168():38-53. PubMed ID: 29614431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks.
    Augustine R
    Prog Biomater; 2018 Jun; 7(2):77-92. PubMed ID: 29754201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs.
    Terpstra ML; Li J; Mensinga A; de Ruijter M; van Rijen MHP; Androulidakis C; Galiotis C; Papantoniou I; Matsusaki M; Malda J; Levato R
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35354130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting.
    Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P
    J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of 3D-Bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton's jelly bioinks for full-thickness articular cartilage defect repair.
    Hu G; Liang Z; Fan Z; Yu M; Pan Q; Nan Y; Zhang W; Wang L; Wang X; Hua Y; Zhou G; Ren W
    Mater Today Bio; 2023 Aug; 21():100695. PubMed ID: 37384040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting.
    Masri S; Fadilah NIM; Hao LQ; Maarof M; Tabata Y; Hiraoka Y; Fauzi MB
    Drug Deliv Transl Res; 2024 Apr; 14(4):1005-1027. PubMed ID: 37938542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D skin bioprinting: future potential for skin regeneration.
    Pasierb A; Jezierska M; Karpuk A; Czuwara J; Rudnicka L
    Postepy Dermatol Alergol; 2022 Oct; 39(5):845-851. PubMed ID: 36457694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels.
    Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J
    J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
    Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additive manufacturing of bioactive glass biomaterials.
    Simorgh S; Alasvand N; Khodadadi M; Ghobadi F; Malekzadeh Kebria M; Brouki Milan P; Kargozar S; Baino F; Mobasheri A; Mozafari M
    Methods; 2022 Dec; 208():75-91. PubMed ID: 36334889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models.
    Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z
    Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.