BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38188965)

  • 1. Non-invasive assessment of sublingual microcirculation using flow derived from green light PPG: evaluation and reference values.
    Acevedo RU; Sánchez LO; Londoño SV; Mejía-Mejía E; Villa RT; Goez YM
    J Biomed Opt; 2024 Jan; 29(1):017001. PubMed ID: 38188965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization.
    Liu H; Allen J; Khalid SG; Chen F; Zheng D
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855
    [No Abstract]   [Full Text] [Related]  

  • 4. A comparative study of photoplethysmogram and piezoelectric plethysmogram signals.
    Qananwah Q; Dagamseh A; Alquran H; Ibrahim KS; Alodat M; Hayden O
    Phys Eng Sci Med; 2020 Dec; 43(4):1207-1217. PubMed ID: 32869130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans.
    Natarajan K; Block RC; Yavarimanesh M; Chandrasekhar A; Mestha LK; Inan OT; Hahn JO; Mukkamala R
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoplethysmography signal analysis to assess obesity, age group and hypertension.
    Ferdinando H; Huotari M; Myllyla T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5572-5575. PubMed ID: 31947118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The advantages of wearable green reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography.
    Mejía-Mejía E; May JM; Kyriacou PA
    Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublingual microcirculation: comparison between the 415 nm blue light and 520 nm green light of sidestream dark field videomicroscopes.
    Liu B; He H; Feng X; Yuan S; Long Y; Akin Ş; Ince C
    J Clin Monit Comput; 2023 Feb; 37(1):297-302. PubMed ID: 35838871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue as an Underrated Alternative to Green: Photoplethysmographic Heartbeat Intervals Estimation under Two Temperature Conditions.
    Shchelkanova E; Shchapova L; Shchelkanov A; Shibata T
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors.
    Andreozzi E; Sabbadini R; Centracchio J; Bifulco P; Irace A; Breglio G; Riccio M
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function.
    Cox JR; Tan I; Qasem A; Avolio AP; Butlin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the analysis of fingertip photoplethysmogram signals.
    Elgendi M
    Curr Cardiol Rev; 2012 Feb; 8(1):14-25. PubMed ID: 22845812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.