BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38189539)

  • 1. CEMIG: prediction of the cis-regulatory motif using the de Bruijn graph from ATAC-seq.
    Wang Y; Li Y; Wang C; Lio CJ; Ma Q; Liu B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MMGAT: a graph attention network framework for ATAC-seq motifs finding.
    Wu X; Hou W; Zhao Z; Huang L; Sheng N; Yang Q; Zhang S; Wang Y
    BMC Bioinformatics; 2024 Apr; 25(1):158. PubMed ID: 38643066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GNNMF: a multi-view graph neural network for ATAC-seq motif finding.
    Zhang S; Wu X; Lian Z; Zuo C; Wang Y
    BMC Genomics; 2024 Mar; 25(1):300. PubMed ID: 38515040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MMGraph: a multiple motif predictor based on graph neural network and coexisting probability for ATAC-seq data.
    Zhang S; Yang L; Wu X; Sheng N; Fu Y; Ma A; Wang Y
    Bioinformatics; 2022 Sep; 38(19):4636-4638. PubMed ID: 35997564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data.
    Schultheis H; Bentsen M; Heger V; Looso M
    Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
    Cazares TA; Rizvi FW; Iyer B; Chen X; Kotliar M; Bejjani AT; Wayman JA; Donmez O; Wronowski B; Parameswaran S; Kottyan LC; Barski A; Weirauch MT; Prasath VBS; Miraldi ER
    PLoS Comput Biol; 2023 Jan; 19(1):e1010863. PubMed ID: 36719906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle.
    Nair VD; Vasoya M; Nair V; Smith GR; Pincas H; Ge Y; Douglas CM; Esser KA; Sealfon SC
    Genomics; 2021 Nov; 113(6):3827-3841. PubMed ID: 34547403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATAC-Seq Reveals the Landscape of Open Chromatin and 
    Zhang Z; Lin L; Chen H; Ye W; Dong S; Zheng X; Wang Y
    Mol Plant Microbe Interact; 2022 Apr; 35(4):301-310. PubMed ID: 35037783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.
    Setty M; Leslie CS
    PLoS Comput Biol; 2015 May; 11(5):e1004271. PubMed ID: 26016777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAC-pipe: general analysis of genome-wide chromatin accessibility.
    Zuo Z; Jin Y; Zhang W; Lu Y; Li B; Qu K
    Brief Bioinform; 2019 Sep; 20(5):1934-1943. PubMed ID: 29982337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing deep learning methods in cis-regulatory motif finding based on genomic sequencing data.
    Zhang S; Ma A; Zhao J; Xu D; Ma Q; Wang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34607350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile.
    Yang T; Henao R
    PLoS Comput Biol; 2022 Sep; 18(9):e1009921. PubMed ID: 36094959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv.
    Orchard P; Kyono Y; Hensley J; Kitzman JO; Parker SCJ
    Cell Syst; 2020 Mar; 10(3):298-306.e4. PubMed ID: 32213349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AIAP: A Quality Control and Integrative Analysis Package to Improve ATAC-seq Data Analysis.
    Liu S; Li D; Lyu C; Gontarz PM; Miao B; Madden PAF; Wang T; Zhang B
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):641-651. PubMed ID: 34273560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.