These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38189953)

  • 1. Biosynthesis of eriodictyol in citrus waster by endowing P450BM3 activity of naringenin hydroxylation.
    Zhang X; Feng Y; Hua Y; Zhang C; Fang B; Long X; Pan Y; Gao B; Zhang JZH; Li L; Ni H; Zhang L
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):84. PubMed ID: 38189953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities.
    Chu LL; Pandey RP; Jung N; Jung HJ; Kim EH; Sohng JK
    Microb Cell Fact; 2016 Aug; 15(1):135. PubMed ID: 27495155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1.
    Nagayoshi H; Murayama N; Kim V; Kim D; Takenaka S; Yamazaki H; Guengerich FP; Shimada T
    Chem Res Toxicol; 2023 Nov; 36(11):1778-1788. PubMed ID: 37783573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisiea functionally expressing flavonoid 3' hydroxylase.
    Amor IL; Hehn A; Guedone E; Ghedira K; Engasser JM; Chekir-Ghedrira L; Ghoul M
    Nat Prod Commun; 2010 Dec; 5(12):1893-8. PubMed ID: 21299115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum.
    Wu X; Liu J; Liu D; Yuwen M; Koffas MAG; Zha J
    Microb Cell Fact; 2022 May; 21(1):86. PubMed ID: 35568867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary investigation of naringenin hydroxylation with recombinant E. coli expressing plant flavonoid hydroxylation gene.
    Amor IL; Salem N; Guedon E; Engasser JM; Chekir-Ghedrira L; Ghoul M
    Nat Prod Commun; 2010 May; 5(5):777-82. PubMed ID: 20521546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical Characterization of a Flavone Synthase I from Daucus carota and its Application for Bioconversion of Flavanones to Flavones.
    Zhang X; Qi Z; Fan X; Zhang H; Pei J; Zhao L
    Appl Biochem Biotechnol; 2023 Feb; 195(2):933-946. PubMed ID: 36242726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus-fruits flavonoid (+/-)-naringenin.
    Orallo F; Camiña M; Alvarez E; Basaran H; Lugnier C
    Planta Med; 2005 Feb; 71(2):99-107. PubMed ID: 15729616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures.
    Hernández-Guzmán C; Prado-Barragán A; Gimeno M; Román-Guerrero A; Rutiaga-Quiñones OM; Rocha Guzmán NE; Huerta-Ochoa S
    Bioprocess Biosyst Eng; 2020 Jul; 43(7):1219-1230. PubMed ID: 32144595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering
    Dunstan MS; Robinson CJ; Jervis AJ; Yan C; Carbonell P; Hollywood KA; Currin A; Swainston N; Feuvre RL; Micklefield J; Faulon JL; Breitling R; Turner N; Takano E; Scrutton NS
    Synth Biol (Oxf); 2020; 5(1):ysaa012. PubMed ID: 33195815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC.
    Jones JA; Collins SM; Vernacchio VR; Lachance DM; Koffas MA
    Biotechnol Prog; 2016; 32(1):21-5. PubMed ID: 26488898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic properties of cytochrome P450 catalyzing 3'-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium.
    Kasai N; Ikushiro S; Hirosue S; Arisawa A; Ichinose H; Wariishi H; Ohta M; Sakaki T
    Biochem Biophys Res Commun; 2009 Sep; 387(1):103-8. PubMed ID: 19576179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavanones: Citrus phytochemical with health-promoting properties.
    Barreca D; Gattuso G; Bellocco E; Calderaro A; Trombetta D; Smeriglio A; Laganà G; Daglia M; Meneghini S; Nabavi SM
    Biofactors; 2017 Jul; 43(4):495-506. PubMed ID: 28497905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP.
    Wilcox LJ; Borradaile NM; de Dreu LE; Huff MW
    J Lipid Res; 2001 May; 42(5):725-34. PubMed ID: 11352979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The antioxidant activity of citrus fruit peels].
    Kroyer G
    Z Ernahrungswiss; 1986 Mar; 25(1):63-9. PubMed ID: 3727631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms.
    Yang Y; Trevethan M; Wang S; Zhao L
    J Nutr Biochem; 2022 Jun; 104():108967. PubMed ID: 35189328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.
    Kongpichitchoke T; Hsu JL; Huang TC
    J Agric Food Chem; 2015 May; 63(18):4580-6. PubMed ID: 25907027
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Stabrauskiene J; Marksa M; Ivanauskas L; Viskelis P; Viskelis J; Bernatoniene J
    Nutrients; 2023 Mar; 15(5):. PubMed ID: 36904275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.
    Ohashi T; Hasegawa Y; Misaki R; Fujiyama K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):687-96. PubMed ID: 26433966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.