These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38190047)

  • 1. Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum.
    Fiamenghi MB; Prodonoff JS; Borelli G; Carazzolle MF; Pereira GAG; José J
    Extremophiles; 2024 Jan; 28(1):9. PubMed ID: 38190047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale resources for Thermoanaerobacterium saccharolyticum.
    Currie DH; Raman B; Gowen CM; Tschaplinski TJ; Land ML; Brown SD; Covalla SF; Klingeman DM; Yang ZK; Engle NL; Johnson CM; Rodriguez M; Shaw AJ; Kenealy WR; Lynd LR; Fong SS; Mielenz JR; Davison BH; Hogsett DA; Herring CD
    BMC Syst Biol; 2015 Jun; 9():30. PubMed ID: 26111937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Beri D; Olson DG; Holwerda EK; Lynd LR
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Lo J; Zheng T; Hon S; Olson DG; Lynd LR
    J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning and comparative genomics approaches for the discovery of xylose transporters in yeast.
    Fiamenghi MB; Bueno JGR; Camargo AP; Borelli G; Carazzolle MF; Pereira GAG; Dos Santos LV; José J
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):57. PubMed ID: 35596177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions.
    Podkaminer KK; Guss AM; Trajano HL; Hogsett DA; Lynd LR
    Appl Environ Microbiol; 2012 Dec; 78(23):8441-7. PubMed ID: 23023741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.
    Lo J; Zheng T; Olson DG; Ruppertsberger N; Tripathi SA; Tian L; Guss AM; Lynd LR
    J Bacteriol; 2015 Sep; 197(18):2920-9. PubMed ID: 26124241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum.
    Tsakraklides V; Shaw AJ; Miller BB; Hogsett DA; Herring CD
    Biotechnol Biofuels; 2012 Nov; 5(1):85. PubMed ID: 23181505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.
    Hon S; Olson DG; Holwerda EK; Lanahan AA; Murphy SJL; Maloney MI; Zheng T; Papanek B; Guss AM; Lynd LR
    Metab Eng; 2017 Jul; 42():175-184. PubMed ID: 28663138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of phosphoenolpyruvate to pyruvate in
    Cui J; Maloney MI; Olson DG; Lynd LR
    Metab Eng Commun; 2020 Jun; 10():e00122. PubMed ID: 32025490
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production.
    Bhandiwad A; Shaw AJ; Guss A; Guseva A; Bahl H; Lynd LR
    Metab Eng; 2014 Jan; 21():17-25. PubMed ID: 24216277
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Jacobson TB; Korosh TK; Stevenson DM; Foster C; Maranas C; Olson DG; Lynd LR; Amador-Noguez D
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184362
    [No Abstract]   [Full Text] [Related]  

  • 13. Ferredoxin:NAD+ Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation.
    Tian L; Lo J; Shao X; Zheng T; Olson DG; Lynd LR
    Appl Environ Microbiol; 2016 Dec; 82(24):7134-7141. PubMed ID: 27694237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production.
    Wohlbach DJ; Kuo A; Sato TK; Potts KM; Salamov AA; Labutti KM; Sun H; Clum A; Pangilinan JL; Lindquist EA; Lucas S; Lapidus A; Jin M; Gunawan C; Balan V; Dale BE; Jeffries TW; Zinkel R; Barry KW; Grigoriev IV; Gasch AP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13212-7. PubMed ID: 21788494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.
    Currie DH; Guss AM; Herring CD; Giannone RJ; Johnson CM; Lankford PK; Brown SD; Hettich RL; Lynd LR
    Appl Environ Microbiol; 2014 Aug; 80(16):5001-11. PubMed ID: 24907337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139
    [No Abstract]   [Full Text] [Related]  

  • 18. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.
    Hu BB; Zhu MJ
    Microb Cell Fact; 2017 May; 16(1):77. PubMed ID: 28468624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the Type I-B CRISPR Genome Editing System in Thermoanaerobacterium aotearoense SCUT27 and Engineering the Strain for Enhanced Ethanol Production.
    Dai K; Fu H; Guo X; Qu C; Lan Y; Wang J
    Appl Environ Microbiol; 2022 Aug; 88(15):e0075122. PubMed ID: 35862665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout.
    Shaw AJ; Hogsett DA; Lynd LR
    J Bacteriol; 2009 Oct; 191(20):6457-64. PubMed ID: 19648238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.