These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38190436)

  • 1. High-density polyethylene (HDPE)-incorporated boron carbide and boric acid nanoparticles as a nanoshield of photoneutrons from medical linear accelerators.
    Vegari A; Abdisaray A; Mostafanejad K; Jabbari N
    Int J Radiat Biol; 2024; 100(4):609-618. PubMed ID: 38190436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of a Nano-based neutron shield for fast neutrons from medical linear accelerators in radiation therapy.
    Afkham Y; Mesbahi A; Alemi A; Zolfagharpour F; Jabbari N
    Radiat Oncol; 2020 May; 15(1):105. PubMed ID: 32393290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2020 Aug; 162():109203. PubMed ID: 32501225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of the biological effects of boron neutron capture irradiation with d(14)+Be neutrons in vitro.
    Pöller F; Sauerwein W
    Radiat Res; 1995 Apr; 142(1):98-106. PubMed ID: 7899565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.
    Ueda H; Tanaka H; Sakurai Y
    Appl Radiat Isot; 2015 Oct; 104():25-8. PubMed ID: 26133664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrosprayed chitosan/alginate/polyvinyl alcohol nanoparticles as boric acid carriers for
    Wu WC; Wang SH; Ou ST; Liu YH; Liu BH; Tseng FG
    Nanomedicine (Lond); 2020 May; 15(11):1067-1077. PubMed ID: 32326875
    [No Abstract]   [Full Text] [Related]  

  • 8. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron-enriched polyvinyl-alcohol/boric-acid nanoparticles for boron neutron capture therapy.
    Chan WJ; Cho HL; Goudar V; Bupphathong S; Shu CH; Kung C; Tseng FG
    Nanomedicine (Lond); 2021 Mar; 16(6):441-452. PubMed ID: 33599549
    [No Abstract]   [Full Text] [Related]  

  • 12. Polyglycerol Functionalized
    Wang Y; Reina G; Kang HG; Chen X; Zou Y; Ishikawa Y; Suzuki M; Komatsu N
    Small; 2022 Sep; 18(37):e2204044. PubMed ID: 35983628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel boron carbide-based coating material for reduction of activation in neutron application facilities.
    Tanaka S; Okuno K; Takeuchi Y; Tabara T
    Appl Radiat Isot; 2022 Mar; 181():110074. PubMed ID: 34998212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BNCT research activities at the Granada group and the project NeMeSis: Neutrons for medicine and sciences, towards an accelerator-based facility for new BNCT therapies, medical isotope production and other scientific neutron applications.
    Porras I; Praena J; Arias de Saavedra F; Pedrosa-Rivera M; Torres-Sánchez P; Sabariego MP; Expósito-Hernández J; Llamas-Elvira JM; Ramírez-Navarro A; Rodríguez-Fernández A; Osorio-Ceballos JM; Ruiz-Ruiz C; Ruiz-Magaña MJ
    Appl Radiat Isot; 2020 Nov; 165():109247. PubMed ID: 32692657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of photoneutron fluxes emitted by electron accelerators in the 4-20 MeV range using Monte Carlo codes: A critical review.
    Sari A
    Appl Radiat Isot; 2023 Jan; 191():110506. PubMed ID: 36370471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system.
    Hu N; Tanaka H; Ono K
    Med Phys; 2022 Oct; 49(10):6609-6621. PubMed ID: 35941788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.