These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38190609)

  • 1. Protein-Rich Rafts in Hybrid Polymer/Lipid Giant Unilamellar Vesicles.
    Otrin N; Otrin L; Bednarz C; Träger TK; Hamdi F; Kastritis PL; Ivanov I; Sundmacher K
    Biomacromolecules; 2024 Feb; 25(2):778-791. PubMed ID: 38190609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion.
    Biner O; Schick T; Müller Y; von Ballmoos C
    FEBS Lett; 2016 Jul; 590(14):2051-62. PubMed ID: 27264202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Engineering: Phase Separation in Polymeric Giant Vesicles.
    Rideau E; Wurm FR; Landfester K
    Small; 2020 Jul; 16(27):e1905230. PubMed ID: 32468728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles.
    Kahya N
    Biochim Biophys Acta; 2010 Jul; 1798(7):1392-8. PubMed ID: 20211599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles.
    Efodili E; Knight A; Mirza M; Briones C; Lee IH
    Biochim Biophys Acta Biomembr; 2024 Feb; 1866(2):184256. PubMed ID: 37989398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
    Lira RB; Dimova R; Riske KA
    Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
    Stöckl M; Nikolaus J; Herrmann A
    Methods Mol Biol; 2010; 606():115-26. PubMed ID: 20013394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing artificial respiratory chain in polymer compartments: Insights into the interplay between
    Marušič N; Otrin L; Zhao Z; Lira RB; Kyrilis FL; Hamdi F; Kastritis PL; Vidaković-Koch T; Ivanov I; Sundmacher K; Dimova R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15006-15017. PubMed ID: 32554497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.
    Robinson T; Dittrich PS
    Chembiochem; 2019 Oct; 20(20):2666-2673. PubMed ID: 31087814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies.
    Rideau E; Wurm FR; Landfester K
    Adv Biosyst; 2019 Jun; 3(6):e1800324. PubMed ID: 32648708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk Self-Assembly of Giant, Unilamellar Vesicles.
    Kindt JT; Szostak JW; Wang A
    ACS Nano; 2020 Nov; 14(11):14627-14634. PubMed ID: 32602696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.
    Breton M; Amirkavei M; Mir LM
    J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents.
    Dezi M; Di Cicco A; Bassereau P; Lévy D
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7276-81. PubMed ID: 23589883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.
    Imam ZI; Kenyon LE; Carrillo A; Espinoza I; Nagib F; Stachowiak JC
    Langmuir; 2016 Apr; 32(15):3774-84. PubMed ID: 27043009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.