These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38190651)

  • 21. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study.
    Dehury B; Raina V; Misra N; Suar M
    J Biomol Struct Dyn; 2021 Nov; 39(18):7231-7245. PubMed ID: 32762417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2.
    Williams-Noonan BJ; Todorova N; Kulkarni K; Aguilar MI; Yarovsky I
    J Phys Chem B; 2021 Mar; 125(10):2533-2550. PubMed ID: 33657325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2.
    Jafary F; Jafari S; Ganjalikhany MR
    Sci Rep; 2021 Mar; 11(1):6927. PubMed ID: 33767306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor.
    Rajpoot S; Ohishi T; Kumar A; Pan Q; Banerjee S; Zhang KYJ; Baig MS
    Drugs R D; 2021 Sep; 21(3):273-283. PubMed ID: 34324175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS-CoV-2 Spike-Mediated Viral Invasion.
    Wu M; Li W; Lin S; Fan J; Cui L; Xiang Y; Li K; Tang L; Duan Y; Chen Z; Yang F; Shui W; Lu G; Lai Y
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301478. PubMed ID: 37590389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts.
    Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying key determinants and dynamics of SARS-CoV-2/ACE2 tight interaction.
    Ngo VA; Jha RK
    PLoS One; 2021; 16(9):e0257905. PubMed ID: 34582502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain.
    Yang M; Li J; Huang Z; Li H; Wang Y; Wang X; Kang S; Huang X; Wu C; Liu T; Jia Z; Liang J; Yuan X; He S; Chen X; Zhou Z; Chen Q; Liu S; Li J; Zheng H; Liu X; Li K; Yao X; Lang B; Liu L; Liao HX; Chen S
    Microbiol Spectr; 2021 Oct; 9(2):e0135221. PubMed ID: 34643438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Glycan-Binding Trait of the Sarbecovirus Spike N-Terminal Domain Reveals an Evolutionary Footprint.
    Guo H; Li A; Lin HF; Liu MQ; Chen J; Jiang TT; Li B; Wang Y; Letko MC; Peng W; Shi ZL
    J Virol; 2022 Aug; 96(15):e0095822. PubMed ID: 35852351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational and Enzymatic Studies of Sartans in SARS-CoV-2 Spike RBD-ACE2 Binding: The Role of Tetrazole and Perspectives as Antihypertensive and COVID-19 Therapeutics.
    Kelaidonis K; Ligielli I; Letsios S; Vidali VP; Mavromoustakos T; Vassilaki N; Moore GJ; Hoffmann W; Węgrzyn K; Ridgway H; Chasapis CT; Matsoukas JM
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multivalent Display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to Nanomaterial, Protein Ferritin Nanocages.
    Kalathiya U; Padariya M; Fahraeus R; Chakraborti S; Hupp TR
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33671255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism.
    Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S
    Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Cholesterol-Binding Sequence in Monomeric C-Reactive Protein Binds to the SARS-CoV-2 Spike Receptor-Binding Domain and Blocks Interaction With Angiotensin-Converting Enzyme 2.
    Li HY; Gao N; Liu CY; Liu XL; Wu F; Dai N; Han J; Li QY
    Front Immunol; 2022; 13():918731. PubMed ID: 35874670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutants of human ACE2 differentially promote SARS-CoV and SARS-CoV-2 spike mediated infection.
    Shukla N; Roelle SM; Suzart VG; Bruchez AM; Matreyek KA
    PLoS Pathog; 2021 Jul; 17(7):e1009715. PubMed ID: 34270613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution.
    Erausquin E; Glaser F; Fernández-Recio J; López-Sagaseta J
    Acta Crystallogr D Struct Biol; 2022 Sep; 78(Pt 9):1156-1170. PubMed ID: 36048155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19.
    Dakal TC
    Immunobiology; 2021 Jan; 226(1):152021. PubMed ID: 33232865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies.
    Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R
    J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The SARS-CoV-2 spike N-terminal domain engages 9-
    Tomris I; Unione L; Nguyen L; Zaree P; Bouwman KM; Liu L; Li Z; Fok JA; Ríos Carrasco M; van der Woude R; Kimpel ALM; Linthorst MW; Verpalen ECJM; Caniels TG; Sanders RW; Heesters BA; Pieters RJ; Jiménez-Barbero J; Klassen JS; Boons GJ; de Vries RP
    bioRxiv; 2022 Oct; ():. PubMed ID: 36263070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2.
    Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM
    J Infect Public Health; 2021 Feb; 14(2):227-237. PubMed ID: 33493919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Examining sialic acid derivatives as potential inhibitors of SARS-CoV-2 spike protein receptor binding domain.
    Banerjee T; Gosai A; Yousefi N; Garibay OO; Seal S; Balasubramanian G
    J Biomol Struct Dyn; 2024 Aug; 42(12):6342-6358. PubMed ID: 37424217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.