These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38190944)

  • 1. Comparative analysis of hydrogen production and bacterial communities in mesophilic and thermophilic consortia using multiple inoculum sources.
    Kim G; Yang H; Lee J; Cho KS
    Chemosphere; 2024 Feb; 350():141144. PubMed ID: 38190944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effect of acid and heat inoculum pretreatment on dark fermentative biohydrogen production.
    Hidalgo D; Pérez-Zapatero E; Martín-Marroquín J
    Environ Res; 2023 Dec; 239(Pt 2):117433. PubMed ID: 37858694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salinity impact on the metabolic and taxonomic profiles of acid and alkali treated inoculum for hydrogen production from food waste.
    Luo L; Pradhan N
    Bioresour Technol; 2022 Oct; 362():127815. PubMed ID: 36031126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing.
    Laothanachareon T; Kanchanasuta S; Mhuanthong W; Phalakornkule C; Pisutpaisal N; Champreda V
    J Environ Manage; 2014 Nov; 144():143-51. PubMed ID: 24945701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of microbial inoculum storage on dark fermentative H
    Dauptain K; Schneider A; Noguer M; Fontanille P; Escudie R; Carrere H; Trably E
    Bioresour Technol; 2021 Jan; 319():124234. PubMed ID: 33254457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohythane production from food waste in a two-stage process: assessing the energy recovery potential.
    Ghimire A; Luongo V; Frunzo L; Lens PNL; Pirozzi F; Esposito G
    Environ Technol; 2022 Jun; 43(14):2190-2196. PubMed ID: 33357020
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation.
    Luo L; Sriram S; Johnravindar D; Louis Philippe Martin T; Wong JWC; Pradhan N
    Bioresour Technol; 2022 Aug; 358():127404. PubMed ID: 35654323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of genus Clostridium abundance on mixed-culture fermentation converting food waste into biohydrogen.
    Jung JH; Sim YB; Baik JH; Park JH; Kim SM; Yang J; Kim SH
    Bioresour Technol; 2021 Dec; 342():125942. PubMed ID: 34563827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome.
    Jung JH; Sim YB; Baik JH; Park JH; Kim SH
    Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poultry slaughterhouse anaerobic ponds as a source of inoculum for biohydrogen production.
    Cripa FB; Arantes MK; Sequinel R; Fiorini A; Rosado FR; Alves HJ
    J Biosci Bioeng; 2020 Jan; 129(1):77-85. PubMed ID: 31591025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study on fermentative H₂ production from food waste as affected by pH.
    Cappai G; De Gioannis G; Friargiu M; Massi E; Muntoni A; Polettini A; Pomi R; Spiga D
    Waste Manag; 2014 Aug; 34(8):1510-9. PubMed ID: 24833177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.
    Gupta M; Gomez-Flores M; Nasr N; Elbeshbishy E; Hafez H; Hesham El Naggar M; Nakhla G
    Bioresour Technol; 2015 Sep; 192():741-7. PubMed ID: 26101964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia.
    Zagrodnik R; Seifert K
    Pol J Microbiol; 2020 Sep; 69(1):109-120. PubMed ID: 32189481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process.
    Abreu AA; Tavares F; Alves MM; Cavaleiro AJ; Pereira MA
    Bioresour Technol; 2019 Apr; 278():180-186. PubMed ID: 30703635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production.
    Mugnai G; Borruso L; Mimmo T; Cesco S; Luongo V; Frunzo L; Fabbricino M; Pirozzi F; Cappitelli F; Villa F
    Bioresour Technol; 2021 Jan; 319():124157. PubMed ID: 32987280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous thermophilic hydrogen production from an enzymatic hydrolysate of agave bagasse: Inoculum origin, homoacetogenesis and microbial community analysis.
    Montiel-Corona V; Palomo-Briones R; Razo-Flores E
    Bioresour Technol; 2020 Jun; 306():123087. PubMed ID: 32172085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen production from used diapers: Evaluation of effect of temperature and substrate conditioning.
    Sotelo-Navarro PX; Poggi-Varaldo HM; Turpin-Marion SJ; Vázquez-Morillas A; Beltrán-Villavicencio M; Espinosa-Valdemar RM
    Waste Manag Res; 2017 Mar; 35(3):267-275. PubMed ID: 28097956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metatranscriptomic Analysis Reveals the Coexpression of Hydrogen-Producing and Homoacetogenesis Genes in Dark Fermentative Reactors Operated at High Substrate Loads.
    Montoya-Rosales JJ; Ontiveros-Valencia A; Esquivel-Hernández DA; Etchebehere C; Celis LB; Razo-Flores E
    Environ Sci Technol; 2023 Aug; 57(31):11552-11560. PubMed ID: 37494704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole cell of pure Clostridium butyricum CBT-1 from anaerobic bioreactor effectively hydrolyzes agro-food waste into biohydrogen.
    Shah TA; Zhihe L; Zhiyu L; Zhang A; Lu D; Fang W; Xuan H
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4853-4865. PubMed ID: 35974282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.