These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38191118)

  • 21. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features.
    Yang R; Liu J; Zhang L
    Comput Biol Chem; 2023 Jun; 104():107853. PubMed ID: 36990028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction.
    Basith S; Lee G; Manavalan B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34532736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep ensemble learning for Alzheimer's disease classification.
    An N; Ding H; Yang J; Au R; Ang TFA
    J Biomed Inform; 2020 May; 105():103411. PubMed ID: 32234546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iSUMOK-PseAAC: prediction of lysine sumoylation sites using statistical moments and Chou's PseAAC.
    Khan YD; Khan NS; Naseer S; Butt AH
    PeerJ; 2021; 9():e11581. PubMed ID: 34430072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications.
    Chang CC; Tung CH; Chen CW; Tu CH; Chu YW
    Sci Rep; 2018 Oct; 8(1):15512. PubMed ID: 30341374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting sumoylation site by feature selection method.
    Cai Y; He J; Lu L
    J Biomol Struct Dyn; 2011 Apr; 28(5):797-804. PubMed ID: 21294590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NSCGCN: A novel deep GCN model to diagnosis COVID-19.
    Tang C; Hu C; Sun J; Wang SH; Zhang YD
    Comput Biol Med; 2022 Nov; 150():106151. PubMed ID: 36244303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Development of Machine Learning Methods in Sumoylation Sites Prediction.
    Zhao YW; Zhang S; Ding H
    Curr Med Chem; 2022; 29(5):894-907. PubMed ID: 34525906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes.
    Le NQK; Ho QT
    Methods; 2022 Aug; 204():199-206. PubMed ID: 34915158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capsule network for protein post-translational modification site prediction.
    Wang D; Liang Y; Xu D
    Bioinformatics; 2019 Jul; 35(14):2386-2394. PubMed ID: 30520972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning.
    Wang C; Zou Q; Ju Y; Shi H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):967-975. PubMed ID: 36063523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formator: Predicting Lysine Formylation Sites Based on the Most Distant Undersampling and Safe-Level Synthetic Minority Oversampling.
    Jia C; Zhang M; Fan C; Li F; Song J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1937-1945. PubMed ID: 31804942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deepm5C: A deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy.
    Hasan MM; Tsukiyama S; Cho JY; Kurata H; Alam MA; Liu X; Manavalan B; Deng HW
    Mol Ther; 2022 Aug; 30(8):2856-2867. PubMed ID: 35526094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites.
    Chen Z; He N; Huang Y; Qin WT; Liu X; Li L
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.