These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38191403)
1. Dirichlet process mixture models to impute missing predictor data in counterfactual prediction models: an application to predict optimal type 2 diabetes therapy. Cardoso P; Dennis JM; Bowden J; Shields BM; McKinley TJ; BMC Med Inform Decis Mak; 2024 Jan; 24(1):12. PubMed ID: 38191403 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Bayesian approaches for developing prediction models in rare disease: application to the identification of patients with Maturity-Onset Diabetes of the Young. Cardoso P; McDonald TJ; Patel KA; Pearson ER; Hattersley AT; Shields BM; McKinley TJ BMC Med Res Methodol; 2024 Jun; 24(1):128. PubMed ID: 38834992 [TBL] [Abstract][Full Text] [Related]
3. A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies with Nonignorable Missingness with Application to an Acute Schizophrenia Clinical Trial. Linero AR; Daniels MJ J Am Stat Assoc; 2015 Mar; 110(509):45-55. PubMed ID: 26236060 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
6. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis. Spineli LM BMC Med Res Methodol; 2019 Apr; 19(1):86. PubMed ID: 31018836 [TBL] [Abstract][Full Text] [Related]
7. Two-level stochastic search variable selection in GLMs with missing predictors. Mitra R; Dunson D Int J Biostat; 2010; 6(1):Article 33. PubMed ID: 21969986 [TBL] [Abstract][Full Text] [Related]
8. A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction. Hu Z; Du D PLoS One; 2020; 15(9):e0237724. PubMed ID: 32956366 [TBL] [Abstract][Full Text] [Related]
9. Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study. Sisk R; Sperrin M; Peek N; van Smeden M; Martin GP Stat Methods Med Res; 2023 Aug; 32(8):1461-1477. PubMed ID: 37105540 [No Abstract] [Full Text] [Related]
10. Kernel machine learning methods to handle missing responses with complex predictors. Application in modelling five-year glucose changes using distributional representations. Matabuena M; Félix P; García-Meixide C; Gude F Comput Methods Programs Biomed; 2022 Jun; 221():106905. PubMed ID: 35649295 [TBL] [Abstract][Full Text] [Related]
11. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
12. Bayesian methods for missing covariates in cure rate models. Chen MH; Ibrahim JG; Lipsitz SR Lifetime Data Anal; 2002 Jun; 8(2):117-46. PubMed ID: 12048863 [TBL] [Abstract][Full Text] [Related]
13. Nonparametric failure time: Time-to-event machine learning with heteroskedastic Bayesian additive regression trees and low information omnibus Dirichlet process mixtures. Sparapani RA; Logan BR; Maiers MJ; Laud PW; McCulloch RE Biometrics; 2023 Dec; 79(4):3023-3037. PubMed ID: 36932826 [TBL] [Abstract][Full Text] [Related]
14. Bayesian nonparametric generative models for causal inference with missing at random covariates. Roy J; Lum KJ; Zeldow B; Dworkin JD; Re VL; Daniels MJ Biometrics; 2018 Dec; 74(4):1193-1202. PubMed ID: 29579341 [TBL] [Abstract][Full Text] [Related]
15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
16. Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach. Spineli LM; Kalyvas C; Papadimitropoulou K Stat Methods Med Res; 2021 Apr; 30(4):958-975. PubMed ID: 33406990 [TBL] [Abstract][Full Text] [Related]
17. Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees. Logan BR; Sparapani R; McCulloch RE; Laud PW Stat Methods Med Res; 2019 Apr; 28(4):1079-1093. PubMed ID: 29254443 [TBL] [Abstract][Full Text] [Related]
18. Optimal population prediction of sandhill crane recruitment based on climate-mediated habitat limitations. Gerber BD; Kendall WL; Hooten MB; Dubovsky JA; Drewien RC J Anim Ecol; 2015 Sep; 84(5):1299-310. PubMed ID: 25808951 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis. Turner NL; Dias S; Ades AE; Welton NJ Stat Med; 2015 May; 34(12):2062-80. PubMed ID: 25809313 [TBL] [Abstract][Full Text] [Related]
20. A Bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilization. Fanconi C; de Hond A; Peterson D; Capodici A; Hernandez-Boussard T EBioMedicine; 2023 Jun; 92():104632. PubMed ID: 37269570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]