BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38191930)

  • 1. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes.
    Hu Y; Rong J; Xu Y; Xie R; Peng J; Gao L; Tan K
    Nat Methods; 2024 Feb; 21(2):267-278. PubMed ID: 38191930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-domain information fusion for enhanced cell population delineation in single-cell spatial-omics data.
    Zhu B; Gao S; Chen S; Yeung J; Bai Y; Huang AY; Yeo YY; Liao G; Mao S; Jiang ZG; Rodig SJ; Shalek AK; Nolan GP; Jiang S; Ma Z
    bioRxiv; 2024 May; ():. PubMed ID: 38798592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-granularity graph pooling for video-based person re-identification.
    Pan H; Chen Y; He Z
    Neural Netw; 2023 Mar; 160():22-33. PubMed ID: 36592527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data.
    Krueger R; Beyer J; Jang WD; Kim NW; Sokolov A; Sorger PK; Pfister H
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):227-237. PubMed ID: 31514138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus¬†Images.
    Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G
    Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCMAG: A Semisupervised Single-Cell Clustering Method Based on Matrix Aggregation Graph Convolutional Neural Network.
    Peng H; Fan W; Fang C; Gao W; Li Y
    Comput Math Methods Med; 2021; 2021():6842752. PubMed ID: 34646337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents.
    Liu M; Li M; Zhang X
    Comput Intell Neurosci; 2022; 2022():5653942. PubMed ID: 35707184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition.
    Budisteanu EA; Mocanu IG
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph Convolution Networks with manifold regularization for semi-supervised learning.
    Kejani MT; Dornaika F; Talebi H
    Neural Netw; 2020 Jul; 127():160-167. PubMed ID: 32361546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DiviK: divisive intelligent K-means for hands-free unsupervised clustering in big biological data.
    Mrukwa G; Polanska J
    BMC Bioinformatics; 2022 Dec; 23(1):538. PubMed ID: 36503372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellograph: a semi-supervised approach to analyzing multi-condition single-cell RNA-sequencing data using graph neural networks.
    Shahir JA; Stanley N; Purvis JE
    BMC Bioinformatics; 2024 Jan; 25(1):25. PubMed ID: 38221640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data.
    Zhu Y; Li H; Miller DJ; Wang Z; Xuan J; Clarke R; Hoffman EP; Wang Y
    BMC Bioinformatics; 2008 Sep; 9():383. PubMed ID: 18801195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised and self-supervised deep learning approaches for biomedical text mining.
    Nadif M; Role F
    Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised convolutional variational autoencoder deep embedding clustering for Raman spectra.
    Guo Y; Jin W; Wang W; Guo Z; He Y
    Anal Methods; 2022 Oct; 14(39):3898-3910. PubMed ID: 36169059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry.
    Zhang Z; Chen X; Tang R; Zhu Y; Guo H; Qu Y; Xie P; Lian IY; Wang Y; Lo YH
    Sci Rep; 2023 Nov; 13(1):20533. PubMed ID: 37996496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm.
    Ajay P; Nagaraj B; Kumar RA; Huang R; Ananthi P
    Scanning; 2022; 2022():1200860. PubMed ID: 35800209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral embedding network for attributed graph clustering.
    Zhang X; Liu H; Wu XM; Zhang X; Liu X
    Neural Netw; 2021 Oct; 142():388-396. PubMed ID: 34139655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.