These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38191971)

  • 1. From Sea to Soil: Marine Bacillus subtilis enhancing chickpea production through in vitro and in vivo plant growth promoting traits.
    Rathod K; Rana S; Dhandhukia P; Thakker JN
    Braz J Microbiol; 2024 Mar; 55(1):823-836. PubMed ID: 38191971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating marine Bacillus as an effective growth promoter for chickpea.
    Rathod K; Rana S; Dhandukia P; Thakker JN
    J Genet Eng Biotechnol; 2023 Nov; 21(1):137. PubMed ID: 37999862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture.
    Khan N; Bano A; Babar MDA
    PLoS One; 2020; 15(4):e0231426. PubMed ID: 32271848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endophytic
    Mageshwaran V; Gupta R; Singh S; Sahu PK; Singh UB; Chakdar H; Bagul SY; Paul S; Singh HV
    Front Microbiol; 2022; 13():994847. PubMed ID: 36406422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions.
    Yadav R; Ror P; Rathore P; Kumar S; Ramakrishna W
    J Appl Microbiol; 2021 Jul; 131(1):339-359. PubMed ID: 33269514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems.
    Posada LF; Álvarez JC; Romero-Tabarez M; de-Bashan L; Villegas-Escobar V
    Microbiol Res; 2018 Dec; 217():69-80. PubMed ID: 30384910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (
    Pandey S; Gupta S; Ramawat N
    3 Biotech; 2019 Jul; 9(7):277. PubMed ID: 31245241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed-Derived Microbial Community of Wild
    Lalzar M; Zeevi A; Frenkel O; Gamliel A; Abbo S; Iasur Kruh L
    Microbiol Spectr; 2022 Jun; 10(3):e0278521. PubMed ID: 35638782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconnoitering the capabilities of nodule endophytic Pantoea dispersa for improved nodulation and grain yield of chickpea (Cicer arietinum L.).
    Tariq M; Hasnain N; Rasul I; Asad MA; Javed A; Rashid K; Shafique J; Iram W; Hameed A; Zafar M
    World J Microbiol Biotechnol; 2023 Jan; 39(3):85. PubMed ID: 36705812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress.
    Kumar A; Singh S; Mukherjee A; Rastogi RP; Verma JP
    Microbiol Res; 2021 Jan; 242():126616. PubMed ID: 33115624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp.
    Mukherjee A; Singh BK; Verma JP
    Microbiol Res; 2020 Aug; 237():126469. PubMed ID: 32251977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant growth promoting rhizobacterium Bacillus sp. BSE01 alleviates salt toxicity in chickpea (Cicer arietinum L.) by conserving ionic, osmotic, redox and hormonal homeostasis.
    Basu S; Kumari S; Subhadarshini P; Rishu AK; Shekhar S; Kumar G
    Physiol Plant; 2023; 175(6):e14076. PubMed ID: 38148224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification.
    Yadav R; Ror P; Rathore P; Ramakrishna W
    Plant Physiol Biochem; 2020 May; 150():222-233. PubMed ID: 32155450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs.
    Khan N; Bano A; Rahman MA; Guo J; Kang Z; Babar MA
    Sci Rep; 2019 Feb; 9(1):2097. PubMed ID: 30765803
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ji C; Tian H; Wang X; Song X; Ju R; Li H; Gao Q; Li C; Zhang P; Li J; Hao L; Wang C; Zhou Y; Xu R; Liu Y; Du J; Liu X
    Biomed Res Int; 2022; 2022():9506227. PubMed ID: 35578723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifarious Plant Growth-Promoting Rhizobacterium
    Sharma A; Chakdar H; Vaishnav A; Srivastava AK; Khan N; Bansal YK; Kaushik R
    Front Biosci (Landmark Ed); 2023 Oct; 28(10):241. PubMed ID: 37919081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (
    Egamberdieva D; Wirth SJ; Shurigin VV; Hashem A; Abd Allah EF
    Front Microbiol; 2017; 8():1887. PubMed ID: 29033922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of zinc and plant growth-promoting bacteria on soil health as well as aboveground biomass of desi and kabuli chickpea under arid conditions.
    Ullah A; Farooq M; Qadeer A; Sanaullah M
    J Sci Food Agric; 2022 Apr; 102(6):2262-2269. PubMed ID: 34622444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when
    Abeed AHA; Mahdy RE; Alshehri D; Hammami I; Eissa MA; Abdel Latef AAH; Mahmoud GA
    Front Plant Sci; 2022; 13():1004173. PubMed ID: 36340332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and Assessment of Potential Plant Growth-promoting Bacteria Associated with Allium cepa Linn.
    Samayoa BE; Shen FT; Lai WA; Chen WC
    Microbes Environ; 2020; 35(2):. PubMed ID: 32147605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.