These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 38192136)

  • 1. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review.
    Ionescu CM; Jones MA; Wagle SR; Kovacevic B; Foster T; Mikov M; Mooranian A; Al-Salami H
    Curr Drug Targets; 2024; 25(3):158-170. PubMed ID: 38192136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile acid permeation enhancement for inner ear cochlear drug pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss.
    Carey L; Walker D; Jones M; Ionescu C; Wagle S; Kovacevic B; Brown D; Mikov M; Mooranian A; Al-Salami H
    Ther Deliv; 2021 Dec; 12(12):807-819. PubMed ID: 34761700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids.
    McCarthy TC; Li X; Sinal CJ
    J Biol Chem; 2005 Jun; 280(24):23232-42. PubMed ID: 15824121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between gut bacteria and bile in health and disease.
    Long SL; Gahan CGM; Joyce SA
    Mol Aspects Med; 2017 Aug; 56():54-65. PubMed ID: 28602676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart.
    Hanafi NI; Mohamed AS; Sheikh Abdul Kadir SH; Othman MHD
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30486474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species.
    Krasowski MD; Ai N; Hagey LR; Kollitz EM; Kullman SW; Reschly EJ; Ekins S
    BMC Biochem; 2011 Feb; 12():5. PubMed ID: 21291553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile acids and signal transduction: role in glucose homeostasis.
    Nguyen A; Bouscarel B
    Cell Signal; 2008 Dec; 20(12):2180-97. PubMed ID: 18634871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Nanoencapsulation Technology and its Potential Role in Bile Acid-Based Targeted Gene Delivery to the Inner Ear.
    Foster T; Lewkowicz M; Quintas C; Ionescu CM; Jones M; Wagle SR; Kovacevic B; Wong EYM; Mooranian A; Al-Salami H
    Small; 2023 Feb; 19(8):e2204986. PubMed ID: 36538754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids.
    Attili AF; Angelico M; Cantafora A; Alvaro D; Capocaccia L
    Med Hypotheses; 1986 Jan; 19(1):57-69. PubMed ID: 2871479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss.
    He Q; Jia Z; Zhang Y; Ren X
    J Cell Mol Med; 2017 Mar; 21(3):600-608. PubMed ID: 27709784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local drug delivery to the inner ear: Principles, practice, and future challenges.
    Plontke SK; Salt AN
    Hear Res; 2018 Oct; 368():1-2. PubMed ID: 30006112
    [No Abstract]   [Full Text] [Related]  

  • 12. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities.
    Mittal R; Pena SA; Zhu A; Eshraghi N; Fesharaki A; Horesh EJ; Mittal J; Eshraghi AA
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1312-1320. PubMed ID: 30987439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diseases and targets for local drug delivery to the inner ear.
    Lustig LR
    Hear Res; 2018 Oct; 368():3-9. PubMed ID: 29778289
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
    Chen J; Zhao HB
    Neuroscience; 2014 Apr; 265():137-46. PubMed ID: 24480364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry.
    Raufman JP; Chen Y; Cheng K; Compadre C; Compadre L; Zimniak P
    Eur J Pharmacol; 2002 Dec; 457(2-3):77-84. PubMed ID: 12464352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical trials for inner ear drugs: Design and execution challenges.
    Jung DH; Rauch SD
    Hear Res; 2018 Oct; 368():123-126. PubMed ID: 29602591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counter-regulatory role of bile acid activated receptors in immunity and inflammation.
    Fiorucci S; Cipriani S; Mencarelli A; Renga B; Distrutti E; Baldelli F
    Curr Mol Med; 2010 Aug; 10(6):579-95. PubMed ID: 20642438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium.
    D'Aldebert E; Biyeyeme Bi Mve MJ; Mergey M; Wendum D; Firrincieli D; Coilly A; Fouassier L; Corpechot C; Poupon R; Housset C; Chignard N
    Gastroenterology; 2009 Apr; 136(4):1435-43. PubMed ID: 19245866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of bile acid metabolism by 1alpha-hydroxyvitamin D3 administration in mice.
    Nishida S; Ozeki J; Makishima M
    Drug Metab Dispos; 2009 Oct; 37(10):2037-44. PubMed ID: 19581390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical basis of drug delivery to the inner ear.
    Glueckert R; Johnson Chacko L; Rask-Andersen H; Liu W; Handschuh S; Schrott-Fischer A
    Hear Res; 2018 Oct; 368():10-27. PubMed ID: 30442227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.