These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38192445)

  • 1. Lightweight and compact smart walking cane.
    Neves G; Sequeira JS; Santos CP
    PeerJ Comput Sci; 2023; 9():e1563. PubMed ID: 38192445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Human-assistive Robotic Platform with Quadrupedal Locomotion
    Shen T; Afsar MR; Haque MR; McClain E; Meek S; Shen X
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():305-310. PubMed ID: 31374647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weight-Bearing Estimation for Cane Users by Using Onboard Sensors.
    Ballesteros J; Tudela A; Caro-Romero JR; Urdiales C
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection.
    Zhang X; Tricomi E; Missiroli F; Lotti N; Ma X; Masia L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Cane Controlled to Adapt Automatically to Its User Gait Characteristics.
    Trujillo-León A; Ady R; Reversat D; Bachta W
    Front Robot AI; 2020; 7():105. PubMed ID: 33501272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study on Overground Gait of Stroke Survivors With a Conventional Cane and a Haptic Cane.
    Lee H; Eizad A; Lee G; Afzal MR; Yoon J; Oh MK; Yoon J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2183-2192. PubMed ID: 34665734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial Sensor-Based Instrumented Cane for Real-Time Walking Cane Kinematics Estimation.
    Fernandez IG; Ahmad SA; Wada C
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multi-Sensor Cane Can Detect Changes in Gait Caused by Simulated Gait Abnormalities and Walking Terrains.
    Gill S; Seth N; Scheme E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assistive locomotion device with haptic feedback for guiding visually impaired people.
    Jiménez MF; Mello RC; Bastos T; Frizera A
    Med Eng Phys; 2020 Jun; 80():18-25. PubMed ID: 32446757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking Distance Estimation Using Walking Canes with Inertial Sensors.
    Dang DC; Suh YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacing canes with an elasticated orthotic-garment in chronic stroke patients - The influence on gait and balance. A series of N-of-1 trials.
    Maguire CC; Sieben JM; Lutz N; van der Wijden G; Scheidhauer H; de Bie R
    J Bodyw Mov Ther; 2020 Oct; 24(4):203-214. PubMed ID: 33218513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Controller for a Smart Walker Based on Human-Robot Formation.
    Valadão C; Caldeira E; Bastos-Filho T; Frizera-Neto A; Carelli R
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Learning to Use a Mobility Aid on Gait and Cognitive Demands in People with Mild to Moderate Alzheimer's Disease: Part I - Cane.
    Hunter SW; Divine A; Omana H; Wittich W; Hill KD; Johnson AM; Holmes JD
    J Alzheimers Dis; 2019; 71(s1):S105-S114. PubMed ID: 31127766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The walking cane length influences the postural sway of community-dwelling older women.
    Camara CTP; de Freitas SMSF; Lima CA; Amorim CF; Prado-Rico JM; Perracini MR
    Physiother Res Int; 2020 Jan; 25(1):e1804. PubMed ID: 31322813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Which type of cane is the most efficient, based on oxygen consumption and balance capacity, in chronic stroke patients?
    Jeong YG; Jeong YJ; Myong JP; Koo JW
    Gait Posture; 2015 Feb; 41(2):493-8. PubMed ID: 25533049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to improve walking, balance and social participation following stroke: a comparison of the long term effects of two walking aids--canes and an orthosis TheraTogs--on the recovery of gait following acute stroke. A study protocol for a multi-centre, single blind, randomised control trial.
    Maguire C; Sieben JM; Erzer F; Goepfert B; Frank M; Ferber G; Jehn M; Schmidt-Trucksäss A; de Bie RA
    BMC Neurol; 2012 Mar; 12():18. PubMed ID: 22462692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of canes used by older adults in senior living communities.
    Liu HH; Eaves J; Wang W; Womack J; Bullock P
    Arch Gerontol Geriatr; 2011; 52(3):299-303. PubMed ID: 20416960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.