BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38192979)

  • 1. Identification of the function of
    Zhao Y; Tang H; Kuai Y; Xu J; Sun B; Li Y
    Transl Cancer Res; 2023 Dec; 12(12):3629-3640. PubMed ID: 38192979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and verification of potential biomarkers for cholangiocarcinoma.
    Wang S; Yu L; Sun X; Zhang B
    Exp Ther Med; 2022 Sep; 24(3):546. PubMed ID: 35978916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma.
    Sungwan P; Lert-Itthiporn W; Silsirivanit A; Klinhom-On N; Okada S; Wongkham S; Seubwai W
    PeerJ; 2021; 9():e11067. PubMed ID: 33777535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense GM-CSFR
    Saranaruk P; Waraasawapati S; Chamgramol Y; Sawanyawisuth K; Paungpan N; Somphud N; Wongkham C; Okada S; Wongkham S; Vaeteewoottacharn K
    PeerJ; 2023; 11():e14883. PubMed ID: 36883059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expressional and prognostic value of HPCAL1 in cholangiocarcinoma via integrated bioinformatics analyses and experiments.
    Ma M; Zeng G; Li J; Liang J; Huang L; Chen J; Lai J
    Cancer Med; 2023 Jan; 12(1):824-836. PubMed ID: 35645147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAD2L1 Functions As a Novel Diagnostic and Predictive Biomarker in Cholangiocarcinoma.
    Gao Y; Liu Y; Sun L; Ouyang X; Zhu C; Qin X
    Genet Test Mol Biomarkers; 2021 Nov; 25(11):685-695. PubMed ID: 34788140
    [No Abstract]   [Full Text] [Related]  

  • 7. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research.
    Shen H; Bai X; Liu J; Liu P; Zhang T
    Front Oncol; 2022; 12():1001400. PubMed ID: 36300097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Complement Factor H-Related 3 (CFHR3) Expression Indicates Poor Prognosis and Immune Regulation in Cholangiocarcinoma.
    Wang H; He M; Zhang Z; Yin W; Ren B; Lin Y
    J Oncol; 2022; 2022():1752827. PubMed ID: 36213819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncostatin M expression and
    Liu Q; Lan T; Song Y; Cai J; Yu X; Chen W
    Aging (Albany NY); 2020 Nov; 12(21):21518-21543. PubMed ID: 33216732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway.
    Shen H; Zhang J; Zhang Y; Feng Q; Wang H; Li G; Jiang W; Li X
    Gene; 2019 May; 698():50-60. PubMed ID: 30822475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a competing endogenous RNA network related to the prognosis of cholangiocarcinoma and comprehensive analysis of the immunological correlation.
    Wang N; Zhou Y; Zuo Z; Wang R; Li J; Han T; Yang B
    J Gastrointest Oncol; 2021 Oct; 12(5):2287-2309. PubMed ID: 34790393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of key genes for IgA nephropathy based on machine learning algorithm and correlation analysis of immune cells.
    Chen S; Li Y; Wang G; Song L; Tan J; Yang F
    Transpl Immunol; 2023 Jun; 78():101824. PubMed ID: 36948405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATF3 as a potential diagnostic marker of early-stage osteoarthritis and its correlation with immune infiltration through bioinformatics analysis.
    Yang J; Fan Y; Liu S
    Bone Joint Res; 2022 Sep; 11(9):679-689. PubMed ID: 36082523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT3 elicited an anti-Warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis.
    Xu L; Li Y; Zhou L; Dorfman RG; Liu L; Cai R; Jiang C; Tang D; Wang Y; Zou X; Wang L; Zhang M
    Cancer Med; 2019 May; 8(5):2380-2391. PubMed ID: 30993888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-181b-5p Promotes the Progression of Cholangiocarcinoma by Targeting PARK2 via PTEN/PI3K/AKT Signaling Pathway.
    Jiang ZL; Zhang FX; Zhan HL; Yang HJ; Zhang SY; Liu ZH; Jiang Y; Lv LZ; Ke RS
    Biochem Genet; 2022 Feb; 60(1):223-240. PubMed ID: 34169384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate genes for the diagnosis and treatment of cholangiocarcinoma using a bioinformatics approach.
    Zhou M; Zhu Y; Hou R; Mou X; Tan J
    Oncol Lett; 2019 Nov; 18(5):5459-5467. PubMed ID: 31612054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying
    Xiang X; Gao LM; Zhang Y; Zhu Q; Zhao S; Liu W; Ye Y; Tang Y; Zhang W
    PeerJ; 2023; 11():e16618. PubMed ID: 38099311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of miR‑132‑3p in cholangiocarcinoma tissues: A study based on RT‑qPCR, The Cancer Genome Atlas miRNA sequencing, Gene Expression Omnibus microarray data and bioinformatics analyses.
    Wu HY; Xia S; Liu AG; Wei MD; Chen ZB; Li YX; He Y; Liao MJ; Hu QP; Pan SL
    Mol Med Rep; 2019 Dec; 20(6):5002-5020. PubMed ID: 31638221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A2M is a potential core gene in intrahepatic cholangiocarcinoma.
    Zhang G; Liu X; Sun Z; Feng X; Wang H; Hao J; Zhang X
    BMC Cancer; 2022 Jan; 22(1):5. PubMed ID: 34979994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipoprotein B Is Associated With the Microenvironment of Cholangiocarcinoma.
    Xu X; Chen D; Feng X; Hu J; Ge J; Yan C; Zhang D; Ling Z; Chen J; Wu J
    Front Oncol; 2021; 11():654689. PubMed ID: 33954113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.