These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38192980)

  • 1. Use of survival support vector machine combined with random survival forest to predict the survival of nasopharyngeal carcinoma patients.
    Xiao Z; Song Q; Wei Y; Fu Y; Huang D; Huang C
    Transl Cancer Res; 2023 Dec; 12(12):3581-3590. PubMed ID: 38192980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database.
    Sun H; Wu S; Li S; Jiang X
    Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of nomogram with random survival forest for prediction of survival in patients with spindle cell carcinoma.
    Zhang X; Liang J; Du Z; Xie Q; Li T; Tang F
    J Cancer Res Ther; 2022 Dec; 18(7):2006-2012. PubMed ID: 36647963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prediction model based on random survival forest analysis of the overall survival of elderly female papillary thyroid carcinoma patients: a SEER-based study.
    Lun Y; Yuan H; Ma P; Chen J; Lu P; Wang W; Liang R; Zhang J; Gao W; Ding X; Li S; Wang Z; Guo J; Lu L
    Endocrine; 2024 Sep; 85(3):1252-1260. PubMed ID: 38558373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model.
    Kim Y; Kim KH; Park J; Yoon HI; Sung W
    Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation.
    Peng W; Jiang X; Zhang W; Hu J; Zhang Y; Zhang L
    Asian J Surg; 2023 Jul; 46(7):2689-2696. PubMed ID: 36351862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-based random survival Forest model improves prediction of progression-free survival to induction chemotherapy plus concurrent Chemoradiotherapy in Locoregionally Advanced nasopharyngeal carcinoma.
    Pei W; Wang C; Liao H; Chen X; Wei Y; Huang X; Liang X; Bao H; Su D; Jin G
    BMC Cancer; 2022 Jul; 22(1):739. PubMed ID: 35794590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new prognostic model of esophageal squamous cell carcinoma based on Cloud-least squares support vector machine.
    Liu K; Shen LQ; Zhang DB; Kang YX; Wang YX; Chen P; Zhang R; Gu BL; Jiao YL; Yuan X; Qi YJ; Gao SG
    J Thorac Dis; 2023 Sep; 15(9):4938-4948. PubMed ID: 37868877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of survival prediction models for pancreatic cancer: Cox model versus machine learning models.
    Kim H; Park T; Jang J; Lee S
    Genomics Inform; 2022 Jun; 20(2):e23. PubMed ID: 35794703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a random survival forest model for predicting long-term survival of early-stage young breast cancer patients based on the SEER database and an external validation cohort.
    Li LW; Liu X; Shen ML; Zhao MJ; Liu H
    Am J Cancer Res; 2024; 14(4):1609-1621. PubMed ID: 38726282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of machine learning models for identification of predictors of survival and tumour recurrence in liver transplant recipients with hepatocellular carcinoma.
    Bezjak M; Kocman B; Jadrijević S; Filipec Kanižaj T; Antonijević M; Dalbelo Bašić B; Mikulić D
    Ann Transl Med; 2023 Aug; 11(10):345. PubMed ID: 37675331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters.
    Chen H; Li C; Zheng L; Lu W; Li Y; Wei Q
    Cancer Med; 2021 Apr; 10(8):2774-2786. PubMed ID: 33760360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relative Importance of Clinical and Socio-demographic Variables in Prognostic Prediction in Non-Small Cell Lung Cancer: A Variable Importance Approach.
    He J; Zhang JX; Chen CT; Ma Y; De Guzman R; Meng J; Pu Y
    Med Care; 2020 May; 58(5):461-467. PubMed ID: 31985586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study.
    Lin J; Yin M; Liu L; Gao J; Yu C; Liu X; Xu C; Zhu J
    Cancers (Basel); 2022 Sep; 14(19):. PubMed ID: 36230593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest.
    Yang Y; Ma X; Wang Y; Ding X
    Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma].
    Ji GW; Wang K; Xia YX; Li XC; Wang XH
    Zhonghua Wai Ke Za Zhi; 2021 Aug; 59(8):679-685. PubMed ID: 34192861
    [No Abstract]   [Full Text] [Related]  

  • 19. Machine learning-based overall and cancer-specific survival prediction of M0 penile squamous cell carcinoma:A population-based retrospective study.
    Chen D; Liang S; Chen J; Li K; Mi H
    Heliyon; 2024 Jan; 10(1):e23442. PubMed ID: 38163093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.