These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38193119)

  • 1. Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques.
    Chen J; Wang S; Wang K; Abiri P; Huang ZY; Yin J; Jabalera AM; Arianpour B; Roustaei M; Zhu E; Zhao P; Cavallero S; Duarte-Vogel S; Stark E; Luo Y; Benharash P; Tai YC; Cui Q; Hsiai TK
    Bioeng Transl Med; 2024 Jan; 9(1):e10616. PubMed ID: 38193119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Transducer-Guided Electrochemical Impedance Spectroscopy to Assess Lipid-Laden Plaques.
    Ma J; Luo Y; Sevag Packard RR; Ma T; Ding Y; Abiri P; Tai YC; Zhou Q; Shung KK; Li R; Hsiai T
    Sens Actuators B Chem; 2016 Nov; 235():154-161. PubMed ID: 27773967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated electrochemical impedance in the endoluminal regions with high shear stress: implication for assessing lipid-rich atherosclerotic lesions.
    Yu F; Lee J; Jen N; Li X; Zhang Q; Tang R; Zhou Q; Kim ES; Hsiai TK
    Biosens Bioelectron; 2013 May; 43():237-44. PubMed ID: 23318546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits.
    Cao H; Yu F; Zhao Y; Scianmarello N; Lee J; Dai W; Jen N; Beebe T; Li R; Ebrahimi R; Chang DS; Mody FV; Pacella J; Tai YC; Hsiai T
    Biosens Bioelectron; 2014 Apr; 54():610-6. PubMed ID: 24333932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical impedance spectroscopy to characterize inflammatory atherosclerotic plaques.
    Yu F; Dai X; Beebe T; Hsiai T
    Biosens Bioelectron; 2011 Dec; 30(1):165-73. PubMed ID: 21959227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-D Electrochemical Impedance Spectroscopy Mapping of Arteries to Detect Metabolically Active but Angiographically Invisible Atherosclerotic Lesions.
    Packard RRS; Luo Y; Abiri P; Jen N; Aksoy O; Suh WM; Tai YC; Hsiai TK
    Theranostics; 2017; 7(9):2431-2442. PubMed ID: 28744325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.
    Packard RR; Zhang X; Luo Y; Ma T; Jen N; Ma J; Demer LL; Zhou Q; Sayre JW; Li R; Tai YC; Hsiai TK
    Ann Biomed Eng; 2016 Sep; 44(9):2695-706. PubMed ID: 26857007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system.
    Süselbeck T; Thielecke H; Köchlin J; Cho S; Weinschenk I; Metz J; Borggrefe M; Haase KK
    Basic Res Cardiol; 2005 Sep; 100(5):446-52. PubMed ID: 15795794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Relationship between oxidized lipoprotein, angiogenesis and human coronary atherosclerotic plaque stabilization].
    Wei LX; Tang QH; Sun L; Shi HY; Guo AT; You LB
    Zhonghua Bing Li Xue Za Zhi; 2006 Mar; 35(3):138-41. PubMed ID: 16630500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible 3-D Electrochemical Impedance Spectroscopy Sensors Incorporating Phase Delay for Comprehensive Characterization of Atherosclerosis.
    Chen M; Neverova N; Xu S; Suwannaphoom K; Lluri G; Tamboline M; Duarte S; Fishbein MC; Luo Y; Packard RRS
    bioRxiv; 2023 Sep; ():. PubMed ID: 37786712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular imaging of human atherosclerotic lesions by intravascular electric impedance spectroscopy.
    Streitner I; Goldhofer M; Cho S; Kinscherf R; Thielecke H; Borggrefe M; Süselbeck T; Streitner F
    PLoS One; 2012; 7(4):e35405. PubMed ID: 22509411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human pericoronary adipose tissue as storage and possible supply site for oxidized low-density lipoprotein and high-density lipoprotein in coronary artery.
    Uchida Y; Uchida Y; Shimoyama E; Hiruta N; Kishimoto T; Watanabe S
    J Cardiol; 2017 Jan; 69(1):236-244. PubMed ID: 27209423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized Low-density Lipoproteins and Lipopolysaccharides Augment Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine.
    Nooti S; Rai V; Radwan MM; Thankam FG; Singh H; Chatzizisis YS; Agrawal DK
    Cardiol Cardiovasc Med; 2023; 7(4):273-294. PubMed ID: 37577745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies.
    Tsimikas S; Shaw PX
    J Cell Biochem Suppl; 2002; 39():138-46. PubMed ID: 12552613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis.
    Li XN; Yin WH; Sun Y; Kang H; Luo J; Chen K; Hou ZH; Gao Y; Ren XS; Yu YT; An YQ; Zhang Y; Wang HY; Lu B
    Eur Radiol; 2022 Jun; 32(6):4003-4013. PubMed ID: 35171348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current diagnostic modalities for vulnerable plaque detection.
    Schaar JA; Mastik F; Regar E; den Uil CA; Gijsen FJ; Wentzel JJ; Serruys PW; van der Stehen AF
    Curr Pharm Des; 2007; 13(10):995-1001. PubMed ID: 17430163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized LDL in carotid plaques and plasma associates with plaque instability.
    Nishi K; Itabe H; Uno M; Kitazato KT; Horiguchi H; Shinno K; Nagahiro S
    Arterioscler Thromb Vasc Biol; 2002 Oct; 22(10):1649-54. PubMed ID: 12377744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericoronary Adipose Tissue as Storage and Supply Site for Oxidized Low-Density Lipoprotein in Human Coronary Plaques.
    Uchida Y; Uchida Y; Shimoyama E; Hiruta N; Kishimoto T; Watanabe S
    PLoS One; 2016; 11(3):e0150862. PubMed ID: 27010927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules.
    Müller A; Mu L; Meletta R; Beck K; Rancic Z; Drandarov K; Kaufmann PA; Ametamey SM; Schibli R; Borel N; Krämer SD
    Int J Cardiol; 2014 Jul; 174(3):503-15. PubMed ID: 24834996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.