These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38194138)

  • 1. Metabolic engineering of Caldicellulosiruptor bescii for hydrogen production.
    Cha M; Kim JK; Lee WH; Song H; Lee TG; Kim SK; Kim SJ
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):65. PubMed ID: 38194138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose.
    Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass.
    Cha M; Chung D; Elkins JG; Guss AM; Westpheling J
    Biotechnol Biofuels; 2013 Jun; 6(1):85. PubMed ID: 23731756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization.
    Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355
    [No Abstract]   [Full Text] [Related]  

  • 7. Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis.
    Bing RG; Straub CT; Sulis DB; Wang JP; Adams MWW; Kelly RM
    Bioresour Technol; 2022 Mar; 348():126780. PubMed ID: 35093526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile
    Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW
    mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.
    Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW
    Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
    Chung D; Cha M; Guss AM; Westpheling J
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8931-6. PubMed ID: 24889625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Scale Metabolic Model of
    Zhang K; Zhao W; Rodionov DA; Rubinstein GM; Nguyen DN; Tanwee TNN; Crosby J; Bing RG; Kelly RM; Adams MWW; Zhang Y
    mSystems; 2021 Jun; 6(3):e0135120. PubMed ID: 34060912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    Biotechnol Biofuels; 2016; 9(1):176. PubMed ID: 27555882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii.
    Straub CT; Khatibi PA; Wang JP; Conway JM; Williams-Rhaesa AM; Peszlen IM; Chiang VL; Adams MWW; Kelly RM
    Nat Commun; 2019 Aug; 10(1):3548. PubMed ID: 31391460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii.
    Laemthong T; Bing RG; Crosby JR; Manesh MJH; Adams MWW; Kelly RM
    Extremophiles; 2023 Feb; 27(1):6. PubMed ID: 36802247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biohydrogen production from high loads of unpretreated cattle manure by cellulolytic bacterium Caldicellulosiruptor bescii at 75 °C.
    Tunca B; Kutlar FE; Kas A; Yilmazel YD
    Waste Manag; 2023 Sep; 171():401-410. PubMed ID: 37776811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome.
    Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii.
    Williams-Rhaesa AM; Poole FL; Dinsmore JT; Lipscomb GL; Rubinstein GM; Scott IM; Conway JM; Lee LL; Khatibi PA; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476773
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium,
    Cha M; Kim JH; Choi HJ; Nho SB; Kim SY; Cha YL; Song H; Lee WH; Kim SK; Kim SJ
    J Microbiol Biotechnol; 2023 Oct; 33(10):1384-1389. PubMed ID: 37463861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.