These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38194211)

  • 1. Sample preparation conditions for the real-time measurement of W/O emulsions by resonance-enhanced multiphoton ionization time-of-flight mass spectrometry.
    Minami M; Nakata S; Uchimura T
    Anal Sci; 2024 Mar; 40(3):573-577. PubMed ID: 38194211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic Signal Behaviors for Water-in-Oil and Oil-in-Water Emulsions Measured by Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry.
    Sugiyama T; Iwata M; Ueyama T; Uchimura T
    ACS Omega; 2020 Dec; 5(48):31289-31294. PubMed ID: 33324839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance-enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry for Evaluating Emulsion Inversion via Temperature Change.
    Iwata M; Uchimura T
    Anal Sci; 2019 Dec; 35(12):1361-1365. PubMed ID: 31447472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Evaluation of the Creaming of Emulsions via Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry.
    Takezawa H; Itadani K; Obata R; Sugiyama T; Uchimura T
    Anal Sci; 2021; 37(10):1453-1457. PubMed ID: 34629360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Quantitative Analysis of an Oil Component in an Emulsion by Multiphoton Ionization Mass Spectrometry.
    Fukaya H; Uchimura T
    Anal Sci; 2017; 33(9):1067-1070. PubMed ID: 28890492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Aging of Multiple Emulsions Using Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry.
    Tsuda Y; Uchimura T
    Anal Sci; 2016; 32(7):789-95. PubMed ID: 27396662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry to Evaluate the Movement of a Constituent in a Multiple Emulsion.
    Sugiyama T; Minami M; Uchimura T
    ACS Omega; 2022 Jan; 7(2):2099-2104. PubMed ID: 35071898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Profile Measurement of an Emulsion Using Multiphoton Ionization Time-of-Flight Mass Spectrometry in Combination with a Microscope.
    Shimo Y; Uchimura T
    Anal Sci; 2016; 32(10):1059-1063. PubMed ID: 27725604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Creaming of an Emulsion via Mass Spectrometry and UV-Vis Spectrophotometry.
    Shinoda R; Uchimura T
    ACS Omega; 2018 Oct; 3(10):13752-13756. PubMed ID: 31458075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microstructural Study of the O/W Primary Emulsion on the Formation of Oil-in-Water-in-Oil Multiple Emulsion.
    Zhang Q; Qin Y; Duan G; Ou W; Wang Y; Zhang W
    Curr Drug Deliv; 2021; 18(7):994-1002. PubMed ID: 33388020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-Stabilized Powdered Water-in-Oil Emulsions.
    Binks BP; Tyowua AT
    Langmuir; 2016 Apr; 32(13):3110-5. PubMed ID: 27002604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect.
    Tahara Y; Mizuno R; Nishimura T; Mukai SA; Wakabayashi R; Kamiya N; Akiyoshi K; Goto M
    Biomaterials; 2022 Mar; 282():121385. PubMed ID: 35093824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel polymer nanoparticles with core-shell structure for breaking asphaltenes-stabilized W/O and O/W emulsions.
    Mao X; Wang F; Lu B; Tang T; Liu Q; Zeng H
    J Colloid Interface Sci; 2023 Jun; 640():296-308. PubMed ID: 36863185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of the oil phase of a W/O/W emulsion by pancreatic lipase.
    Shima M; Tanaka M; Kimura Y; Adachi S; Matsuno R
    J Control Release; 2004 Jan; 94(1):53-61. PubMed ID: 14684271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylcholine-depleted lecithin: A clean-label low-HLB emulsifier to replace PGPR in w/o and w/o/w emulsions.
    Balcaen M; Steyls J; Schoeppe A; Nelis V; Van der Meeren P
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):836-846. PubMed ID: 32818684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic comparison of structural and lipid oxidation in oil-in-water and water-in-oil biphasic emulgels: effect of emulsion type, oil-phase composition, and oil fraction.
    Chen XW; Hu QH; Li XX; Ma CG
    J Sci Food Agric; 2022 Aug; 102(10):4200-4209. PubMed ID: 35018645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification.
    Tiwari M; Basavaraj MG; Dugyala VR
    Langmuir; 2023 Feb; 39(8):2911-2921. PubMed ID: 36722867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal desorption-multiphoton ionization time-of-flight mass spectrometry of individual aerosol particles: a simplified approach for online single-particle analysis of polycyclic aromatic hydrocarbons and their derivatives.
    Bente M; Sklorz M; Streibel T; Zimmermann R
    Anal Chem; 2009 Apr; 81(7):2525-36. PubMed ID: 19245255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application.
    Korać R; Krajišnik D; Milić J
    Int J Cosmet Sci; 2016 Jun; 38(3):246-56. PubMed ID: 26444550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.