These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38194379)

  • 1. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment.
    Oquendo YA; Coad MM; Wren SM; Lendvay TS; Nisky I; Jarc AM; Okamura AM; Chua Z
    IEEE Trans Haptics; 2024 Jan; PP():. PubMed ID: 38194379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks.
    Özen Ö; Buetler KA; Marchal-Crespo L
    Front Neurosci; 2020; 14():600059. PubMed ID: 33603642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of robotic training depends on motor task characteristics.
    Marchal-Crespo L; Rappo N; Riener R
    Exp Brain Res; 2017 Dec; 235(12):3799-3816. PubMed ID: 28983676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Green CS; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):119-31. PubMed ID: 19787345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-based virtual training system for knee arthroscopic inspection.
    Lyu SR; Lin YK; Huang ST; Yau HT
    Biomed Eng Online; 2013 Jul; 12():63. PubMed ID: 23826988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhance Kinesthetic Experience in Perceptual Learning for Welding Motor Skill Acquisition with Virtual Reality and Robot-based Haptic Guidance.
    Ye Y; Xia P; Xu F; Du J
    IEEE Trans Haptics; 2024 Jul; PP():. PubMed ID: 39042527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task.
    Williams CK; Tremblay L; Carnahan H
    Front Psychol; 2016; 7():2010. PubMed ID: 28082937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Comparisons of Upper-Limb Motor Learning Performance Among Three Types of Haptic Guidance With Non-Assisted Condition in Spiral Drawing Task.
    Muramatsu H; Itaguchi Y; Yamada C; Yoshizawa H; Katsura S
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2545-2552. PubMed ID: 38995712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of on-site teleoperated milling with haptic assistance.
    Drobinsky S; de la Fuente M; Puladi B; Radermacher K
    Int J Comput Assist Radiol Surg; 2023 Nov; 18(11):1969-1976. PubMed ID: 37454325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single robotic session that guides or increases movement error in survivors post-chronic stroke: which intervention is best to boost the learning of a timing task?
    Bouchard AE; Corriveau H; Milot MH
    Disabil Rehabil; 2017 Aug; 39(16):1607-1614. PubMed ID: 27415452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.
    Bouchard AE; Corriveau H; Milot MH
    Front Syst Neurosci; 2015; 9():52. PubMed ID: 25873868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.