These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38194379)

  • 21. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task.
    Marchal-Crespo L; McHughen S; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):209-20. PubMed ID: 19820920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual Haptic Feedback for Training of Robotic Suturing.
    Jourdes F; Valentin B; Allard J; Duriez C; Seeliger B
    Front Robot AI; 2022; 9():800232. PubMed ID: 35187094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning a locomotor task: with or without errors?
    Marchal-Crespo L; Schneider J; Jaeger L; Riener R
    J Neuroeng Rehabil; 2014 Mar; 11():25. PubMed ID: 24594267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haptic guidance can enhance motor learning of a steering task.
    Marchal Crespo L; Reinkensmeyer DJ
    J Mot Behav; 2008 Nov; 40(6):545-56. PubMed ID: 18980907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a mixed controller that amplifies spatial errors while reducing timing errors.
    Marchal-Crespo L; Baumann T; Fichmann D; Maassen S; Duarte JE; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5136-5139. PubMed ID: 28269423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study.
    Lendvay TS; Brand TC; White L; Kowalewski T; Jonnadula S; Mercer LD; Khorsand D; Andros J; Hannaford B; Satava RM
    J Am Coll Surg; 2013 Jun; 216(6):1181-92. PubMed ID: 23583618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.
    Pepley DF; Gordon AB; Yovanoff MA; Mirkin KA; Miller SR; Han DC; Moore JZ
    J Surg Educ; 2017; 74(6):1066-1073. PubMed ID: 28645855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement Strategy Discovery during Training via Haptic Guidance.
    Gibo TL; Abbink DA
    IEEE Trans Haptics; 2016; 9(2):243-54. PubMed ID: 26766379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observational Learning During Simulation-Based Training in Arthroscopy: Is It Useful to Novices?
    LeBel ME; Haverstock J; Cristancho S; van Eimeren L; Buckingham G
    J Surg Educ; 2018; 75(1):222-230. PubMed ID: 28651976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on augmented reality for robotic surgery bedside assistants.
    Stewart CL; Fong A; Payyavula G; DiMaio S; Lafaro K; Tallmon K; Wren S; Sorger J; Fong Y
    J Robot Surg; 2022 Oct; 16(5):1019-1026. PubMed ID: 34762249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.