BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38194455)

  • 1. Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice.
    Ulschmid CM; Sun MR; Jabbarpour CR; Steward AC; Rivera-González KS; Cao J; Martin AA; Barnes M; Wicklund L; Madrid A; Papale LA; Joseph DB; Vezina CM; Alisch RS; Lipinski RJ
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2317668121. PubMed ID: 38194455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC; Hart J; Brown JM; Hansen K; Rocha Marques M; Aho RJ; Grishina I; Hurtado R; Herzlinger D; Ferretti E; Garcia-Garcia MJ; Selleri L
    J Anat; 2018 Aug; 233(2):222-242. PubMed ID: 29797482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics.
    Everson JL; Fink DM; Chung HM; Sun MR; Lipinski RJ
    BMC Genomics; 2018 Jun; 19(1):497. PubMed ID: 29945554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonic hedgehog regulation of
    Everson JL; Fink DM; Yoon JW; Leslie EJ; Kietzman HW; Ansen-Wilson LJ; Chung HM; Walterhouse DO; Marazita ML; Lipinski RJ
    Development; 2017 Jun; 144(11):2082-2091. PubMed ID: 28506991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and developmental basis of orofacial clefts.
    Ji Y; Garland MA; Sun B; Zhang S; Reynolds K; McMahon M; Rajakumar R; Islam MS; Liu Y; Chen Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1558-1587. PubMed ID: 32725806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct DNA methylation profiles in subtypes of orofacial cleft.
    Sharp GC; Ho K; Davies A; Stergiakouli E; Humphries K; McArdle W; Sandy J; Davey Smith G; Lewis SJ; Relton CL
    Clin Epigenetics; 2017; 9():63. PubMed ID: 28603561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patched1 is required in neural crest cells for the prevention of orofacial clefts.
    Metzis V; Courtney AD; Kerr MC; Ferguson C; Rondón Galeano MC; Parton RG; Wainwright BJ; Wicking C
    Hum Mol Genet; 2013 Dec; 22(24):5026-35. PubMed ID: 23900075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonic Hedgehog Signaling in Cranial Neural Crest Cells Regulates Microvascular Morphogenesis in Facial Development.
    Sun MR; Chung HM; Matsuk V; Fink DM; Stebbins MJ; Palecek SP; Shusta EV; Lipinski RJ
    Front Cell Dev Biol; 2020; 8():590539. PubMed ID: 33117819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RERE deficiency contributes to the development of orofacial clefts in humans and mice.
    Kim BJ; Zaveri HP; Kundert PN; Jordan VK; Scott TM; Carmichael J; Scott DA
    Hum Mol Genet; 2021 May; 30(7):595-602. PubMed ID: 33772547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of DNA methylation in newborn blood samples from infants with and without orofacial clefts.
    Xu Z; Lie RT; Wilcox AJ; Saugstad OD; Taylor JA
    Clin Epigenetics; 2019 Mar; 11(1):40. PubMed ID: 30832715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs as epigenetic regulators of orofacial development.
    Seelan RS; Pisano MM; Greene RM
    Differentiation; 2022; 124():1-16. PubMed ID: 35144134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis.
    Sun B; Reynolds K; Saha SK; Zhang S; McMahon M; Zhou CJ
    Birth Defects Res; 2023 Nov; 115(19):1851-1865. PubMed ID: 37435868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of epigenetics and miRNAs in orofacial clefts.
    Garland MA; Sun B; Zhang S; Reynolds K; Ji Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1635-1659. PubMed ID: 32926553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development.
    Hill C; Jacobs B; Kennedy L; Rohde S; Zhou B; Baldwin S; Goudy S
    Cell Tissue Res; 2015 Sep; 361(3):711-22. PubMed ID: 25759071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development.
    Gehlen-Breitbach S; Schmid T; Fröb F; Rodrian G; Weider M; Wegner M; Gölz L
    Int J Oral Sci; 2023 Apr; 15(1):16. PubMed ID: 37024457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycn deficiency underlies the development of orofacial clefts in mice and humans.
    Yang R; Li R; Huang Z; Zuo Y; Yue H; Wu H; Gu F; Wang F; He M; Bian Z
    Hum Mol Genet; 2022 Mar; 31(5):803-815. PubMed ID: 34590686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in DNA Methylation in Orofacial Clefts.
    Charoenvicha C; Sirimaharaj W; Khwanngern K; Chattipakorn N; Chattipakorn SC
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y; Qin C; Jiang R
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.