These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38194541)

  • 1. Phosphor-free micro-pyramid InGaN-based white light-emitting diode with a high color rendering index on a β-Ga
    Duo Y; Yin Y; He R; Chen R; Song Y; Long H; Wang J; Wei T
    Opt Lett; 2024 Jan; 49(2):254-257. PubMed ID: 38194541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional truncated-hexagonal-pyramid vertical InGaN-based white light emitting diodes based on β-Ga
    Zhao J; Yin Y; Chen R; Zhang X; Ran J; Long H; Wang J; Wei T
    Opt Lett; 2022 Jul; 47(13):3299-3302. PubMed ID: 35776610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology.
    Li YC; Chang LB; Chen HJ; Yen CY; Pan KW; Huang BR; Kuo WY; Chow L; Zhou D; Popko E
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor.
    Sheu JK; Chen FB; Wang YC; Chang CC; Huang SH; Liu CN; Lee ML
    Opt Express; 2015 Apr; 23(7):A232-9. PubMed ID: 25968789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga
    Muhammed MM; Alwadai N; Lopatin S; Kuramata A; Roqan IS
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34057-34063. PubMed ID: 28892352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.
    Song KM; Kim DH; Kim JM; Cho CY; Choi J; Kim K; Park J; Kim H
    Nanotechnology; 2017 Jun; 28(22):225703. PubMed ID: 28448276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realizing Single Chip White Light InGaN LED via Dual-Wavelength Multiple Quantum Wells.
    Li Y; Liu C; Zhang Y; Jiang Y; Hu X; Song Y; Su Z; Jia H; Wang W; Chen H
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.
    Jung BO; Bae SY; Lee S; Kim SY; Lee JY; Honda Y; Amano H
    Nanoscale Res Lett; 2016 Dec; 11(1):215. PubMed ID: 27102904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN.
    Soh CB; Liu W; Yong AM; Chua SJ; Chow SY; Tripathy S; Tan RJ
    Nanoscale Res Lett; 2010 Aug; 5(11):1788-1794. PubMed ID: 21124627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers.
    Lee KJ; Kim SJ; Kim JJ; Hwang K; Kim ST; Park SJ
    Opt Express; 2014 Jun; 22 Suppl 4():A1164-73. PubMed ID: 24978079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier dynamics of In
    Muhammed MM; Xu J; Wehbe N; Roqan IS
    Opt Express; 2018 Jun; 26(12):14869-14878. PubMed ID: 30114792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-wavelength GaN-based LEDs grown on truncated hexagonal pyramids formed by selective-area regrowth on Si-implanted GaN templates.
    Lee ML; Yeh YH; Tu SJ; Chen PC; Wu MJ; Lai WC; Sheu JK
    Opt Express; 2013 Sep; 21 Suppl 5():A864-71. PubMed ID: 24104581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flower-Like Internal Emission Distribution of LEDs with Monolithic Integration of InGaN-based Quantum Wells Emitting Narrow Blue, Green, and Red Spectra.
    Lee K; Choi I; Lee CR; Chung TH; Kim YS; Jeong KU; Chung DC; Kim JS
    Sci Rep; 2017 Aug; 7(1):7164. PubMed ID: 28769103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-Color InGaN/AlGaN Nanowire Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy: A Promising Candidate for Next Generation Micro Displays.
    Bui HQT; Velpula RT; Jain B; Aref OH; Nguyen HD; Lenka TR; Nguyen HPT
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31344846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells.
    Chang HM; Lai WC; Chen WS; Chang SJ
    Opt Express; 2015 Apr; 23(7):A337-45. PubMed ID: 25968799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon.
    Wang R; Nguyen HP; Connie AT; Lee J; Shih I; Mi Z
    Opt Express; 2014 Dec; 22 Suppl 7():A1768-75. PubMed ID: 25607491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simulation Study of Carrier Capture Ability of the Last InGaN Quantum Well with Different Indium Content for Yellow-Light-Emitting InGaN/GaN Multiple Quantum Wells.
    Liu W; Liu Z; Zhao H; Gao J
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays.
    Yeh TW; Lin YT; Stewart LS; Dapkus PD; Sarkissian R; O'Brien JD; Ahn B; Nutt SR
    Nano Lett; 2012 Jun; 12(6):3257-62. PubMed ID: 22587013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes.
    Jain B; Velpula RT; Thang Bui HQ; Nguyen HD; Lenka TR; Nguyen TK; Nguyen HPT
    Opt Express; 2020 Jan; 28(1):665-675. PubMed ID: 32118989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-wavelength emitting InGan/GaN quantum well grown on V-shaped gan(1101) microfacet.
    Kang ES; Ju JW; Kim JS; Ahn HK; Lee JK; Kim JH; Shin DC; Lee IH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4053-6. PubMed ID: 18047117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.