These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38194561)

  • 1. Fast switching between the ground- and excited-state lasing in a quantum-dot microdisk triggered by sub-ps pulses.
    Zhukov A; Nadtochiy A; Karaborchev A; Fominykh N; Makhov I; Ivanov K; Guseva Y; Kulagina M; Blokhin S; Kryzhanovskaya N
    Opt Lett; 2024 Jan; 49(2):330-333. PubMed ID: 38194561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-state lasing in a quantum dot racetrack microlaser.
    Makhov I; Ivanov K; Moiseev E; Dragunova A; Fominykh N; Kryzhanovskaya N; Zhukov A
    Opt Lett; 2023 Jul; 48(13):3515-3518. PubMed ID: 37390169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk.
    Talalaev V; Kryzhanovskaya N; Tomm JW; Rutckaia V; Schilling J; Zhukov A
    Sci Rep; 2019 Apr; 9(1):5635. PubMed ID: 30948736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots.
    Makhov I; Ivanov K; Moiseev E; Fominykh N; Dragunova A; Kryzhanovskaya N; Zhukov A
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitable interplay between lasing quantum dot states.
    Dillane M; Dubinkin I; Fedorov N; Erneux T; Goulding D; Kelleher B; Viktorov EA
    Phys Rev E; 2019 Jul; 100(1-1):012202. PubMed ID: 31499912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient behaviors of current-injection quantum-dot microdisk lasers.
    Mao MH; Chien HC
    Opt Express; 2012 Jan; 20(3):3302-10. PubMed ID: 22330568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient solid-state distributed feedback dye laser based on polymer-filled nanoporous glass composite excited by a diode-pumped solid-state Nd:LSB microlaser.
    Katarkevich VM; Rubinov AN; Efendiev TSh; Anufrik SS; Koldunov MF
    Appl Opt; 2015 Sep; 54(26):7962-72. PubMed ID: 26368971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.
    Woolf A; Puchtler T; Aharonovich I; Zhu T; Niu N; Wang D; Oliver R; Hu EL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14042-6. PubMed ID: 25197073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. >MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser.
    Zheng L; Kausas A; Taira T
    Opt Express; 2016 Dec; 24(25):28748-28760. PubMed ID: 27958518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of N
    Li H; Pan S; Chen F; Sun F; Li Z; Xu H; Wu J
    Opt Lett; 2020 Dec; 45(24):6591-6594. PubMed ID: 33325847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically induced hysteresis in a two-state quantum dot laser.
    Tykalewicz B; Goulding D; Hegarty SP; Huyet G; Dubinkin I; Fedorov N; Erneux T; Viktorov EA; Kelleher B
    Opt Lett; 2016 Mar; 41(5):1034-7. PubMed ID: 26974109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient dual-energy lasing in a semiconductor microcavity.
    Hsu FK; Xie W; Lee YS; Lin SD; Lai CW
    Sci Rep; 2015 Oct; 5():15347. PubMed ID: 26477277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical amplification and gain dynamics of cavity-free lasing of argon pumped by ultraviolet femtosecond pulses.
    Zhuang C; Zhang X; Lu Q; Liu Y
    Opt Express; 2022 May; 30(10):17156-17163. PubMed ID: 36221544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of quantum dot passively mode-locked lasers with excited-state transition.
    Cheng HC; Lee CP
    Opt Express; 2013 Nov; 21(22):26113-22. PubMed ID: 24216835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency Stabilization and Optically Tunable Lasing in Colloidal Quantum Dot Superparticles.
    Neuhaus SJ; Marino E; Murray CB; Kagan CR
    Nano Lett; 2023 Jan; 23(2):645-651. PubMed ID: 36602545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.
    van Wilderen LJ; Clark IP; Towrie M; van Thor JJ
    J Phys Chem B; 2009 Dec; 113(51):16354-64. PubMed ID: 19950906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode selection in InAs quantum dot microdisk lasers using focused ion beam technique.
    Bogdanov AA; Mukhin IS; Kryzhanovskaya NV; Maximov MV; Sadrieva ZF; Kulagina MM; Zadiranov YM; Lipovskii AA; Moiseev EI; Kudashova YV; Zhukov AE
    Opt Lett; 2015 Sep; 40(17):4022-5. PubMed ID: 26368702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding.
    Ide T; Baba T; Tatebayashi J; Iwamoto S; Nakaoka T; Arakawa Y
    Opt Express; 2005 Mar; 13(5):1615-20. PubMed ID: 19495036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity.
    Wang G; Jiang X; Zhao M; Ma Y; Fan H; Yang Q; Tong L; Xiao M
    Opt Express; 2012 Dec; 20(28):29472-8. PubMed ID: 23388773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers.
    Chen S; Ito T; Asahara A; Yoshita M; Liu W; Zhang J; Zhang B; Suemoto T; Akiyama H
    Sci Rep; 2014 Mar; 4():4325. PubMed ID: 24710268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.