These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38194618)

  • 1. Mechanistic Insights into the Adsorption of Monoclonal Antibodies at the Water/Vapor Interface.
    Saurabh S; Zhang Q; Li Z; Seddon JM; Kalonia C; Lu JR; Bresme F
    Mol Pharm; 2024 Feb; 21(2):704-717. PubMed ID: 38194618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil-Water Interfaces.
    Kannan A; Shieh IC; Negulescu PG; Chandran Suja V; Fuller GG
    Mol Pharm; 2021 Apr; 18(4):1656-1665. PubMed ID: 33656340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations.
    Kannan A; Shieh IC; Fuller GG
    J Colloid Interface Sci; 2019 Aug; 550():128-138. PubMed ID: 31055138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Armoring the Interface with Surfactants to Prevent the Adsorption of Monoclonal Antibodies.
    Kanthe AD; Krause M; Zheng S; Ilott A; Li J; Bu W; Bera MK; Lin B; Maldarelli C; Tu RS
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9977-9988. PubMed ID: 32013386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization.
    Kanthe AD; Carnovale MR; Katz JS; Jordan S; Krause ME; Zheng S; Ilott A; Ying W; Bu W; Bera MK; Lin B; Maldarelli C; Tu RS
    Mol Pharm; 2022 Sep; 19(9):3100-3113. PubMed ID: 35882380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies.
    Hollowell P; Li Z; Hu X; Ruane S; Kalonia C; van der Walle CF; Lu JR
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32353995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry.
    Tein YS; Zhang Z; Wagner NJ
    Langmuir; 2020 Jul; 36(27):7814-7823. PubMed ID: 32551695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the Agitation-Induced Aggregation of Monoclonal Antibodies Using Surface Tensiometry.
    Shieh IC; Patel AR
    Mol Pharm; 2015 Sep; 12(9):3184-93. PubMed ID: 26198590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO
    Li Z; Pan F; Li R; Pambou E; Hu X; Ruane S; Ciumac D; Li P; Welbourn RJL; Webster JRP; Bishop SM; Narwal R; van der Walle CF; Lu JR
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44257-44266. PubMed ID: 30500160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Stabilizing Effect of Histidine on mAb Aggregation: A Molecular Dynamics Study.
    Saurabh S; Kalonia C; Li Z; Hollowell P; Waigh T; Li P; Webster J; Seddon JM; Lu JR; Bresme F
    Mol Pharm; 2022 Sep; 19(9):3288-3303. PubMed ID: 35946408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Agitation-Induced Unfolding Events Causing Aggregation of Monoclonal Antibodies Using Hydrogen Exchange-Mass Spectrometry.
    Gamage CLD; Weis DD; Walters BT
    J Pharm Sci; 2022 Aug; 111(8):2210-2216. PubMed ID: 35533783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Adsorption of a Monoclonal Antibody and Nonionic Surfactant at the PDMS/Water Interface.
    Shen K; Hu X; Li Z; Liao M; Zhuang Z; Ruane S; Wang Z; Li P; Micciulla S; Kasinathan N; Kalonia C; Lu JR
    Mol Pharm; 2023 May; 20(5):2502-2512. PubMed ID: 37012645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method To Measure Protein Unfolding at an Air-Liquid Interface.
    Leiske DL; Shieh IC; Tse ML
    Langmuir; 2016 Oct; 32(39):9930-9937. PubMed ID: 27643824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant Protection Efficacy at Surfaces Varies with the Nature of Hydrophobic Materials.
    Lefebvre G; Maze A; Alvarez-Palencia Jimenez R; Bruckert F; Filipe V; Huille S; Weidenhaupt M
    Pharm Res; 2021 Dec; 38(12):2157-2166. PubMed ID: 34904200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody adsorption on the surface of water studied by neutron reflection.
    Smith C; Li Z; Holman R; Pan F; Campbell RA; Campana M; Li P; Webster JR; Bishop S; Narwal R; Uddin S; van der Walle CF; Lu JR
    MAbs; 2017 Apr; 9(3):466-475. PubMed ID: 28353420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Protein Particle Formation in IgG1 mAbs Formulated with PS20 Vs. PS80 When Subjected to Interfacial Dilatational Stress.
    Vaclaw C; Merritt K; Griffin VP; Whitaker N; Gokhale M; Volkin DB; Ogunyankin MO; Dhar P
    AAPS PharmSciTech; 2023 Apr; 24(5):104. PubMed ID: 37081185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations.
    Vargo KB; Stahl P; Hwang B; Hwang E; Giordano D; Randolph P; Celentano C; Hepler R; Amin K
    Mol Pharm; 2021 Jan; 18(1):148-157. PubMed ID: 33253579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags.
    Kannan A; Shieh IC; Hristov P; Fuller GG
    J Pharm Sci; 2021 Apr; 110(4):1687-1692. PubMed ID: 33141046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Pressure and Viscoelasticity of Antibodies and Their Correlation to Long-Term Stability in Formulation.
    Pham KG; Thompson BR; Wang T; Samaddar S; Qian KK; Liu Y; Wagner NJ
    J Phys Chem B; 2023 Nov; 127(45):9724-9733. PubMed ID: 37917554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.