These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38194797)

  • 1. Investigation of the enrichment-purification process and electrochemical performance of kish graphite in dust from blast furnace tapping yard.
    Rong T; Yuan Y; Yang H; Yu H; Zuo H; Wang J; Xue Q
    Waste Manag; 2024 Mar; 175():121-132. PubMed ID: 38194797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite.
    Li J; Liu R; Ma L; Wei L; Cao L; Shen W; Kang F; Huang ZH
    ACS Omega; 2021 Apr; 6(14):9868-9875. PubMed ID: 33869967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on recovery strategies of graphite from mixed lithium-ion battery chemistries using froth flotation.
    Sahivirta H; Wilson BP; Lundström M; Serna-Guerrero R
    Waste Manag; 2024 May; 180():96-105. PubMed ID: 38564915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery.
    Wang S; Kravchyk KV; Krumeich F; Kovalenko MV
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28478-28485. PubMed ID: 28766336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of carbon from spent carbon cathode by alkaline and acid leaching and thermal treatment and exploration of its application in lithium-ion batteries.
    Zhou H; Zhang D; Jiang Y; Zeng B; Zhao C; Zhang M; Zeng B; Zhu X; Su X; Romanovski V; Bi R
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):114327-114335. PubMed ID: 37861847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust.
    Chen D; Guo H; Li P; Wu F; Lv Y; Yan B; Zhao W; Su Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on modified blast furnace dust in demulsification: The synergistic effect of ferric oxide, hydrophobic carbon, and polysilicate.
    Zhang Y; Li M; Huang W; Fan K; Li J; Zhong M; Li Z; Li C; Zhang Q
    J Air Waste Manag Assoc; 2022 May; 72(5):403-419. PubMed ID: 35113008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Froth flotation separation of carbon from barium slag: Recycling of carbon and minimize the slag.
    Yang T; Wang N; Gu H; Guo T
    Waste Manag; 2021 Feb; 120():108-113. PubMed ID: 33290881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.
    Machemer SD
    Environ Sci Technol; 2004 Jan; 38(2):381-9. PubMed ID: 14750711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Graphite Prepared by Rapid Pulverization as Anode for Lithium-Ion Batteries.
    Liu W; Zong K; Li Y; Deng Y; Hussain A; Cai X
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel hard carbon/graphite composites synthesized by a facile
    Ge C; Fan Z; Zhang J; Qiao Y; Wang J; Ling L
    RSC Adv; 2018 Oct; 8(60):34682-34689. PubMed ID: 35548609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of flaky graphite cleaning by ultrasonic treatment.
    Kang W; Li H
    R Soc Open Sci; 2019 Dec; 6(12):191160. PubMed ID: 31903206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon/Graphite/Amorphous Carbon as Anode Materials for Lithium Secondary Batteries.
    Duan H; Xu H; Wu Q; Zhu L; Zhang Y; Yin B; He H
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrometallurgical enhanced liberation and recovery of anode material from spent lithium-ion batteries.
    Li J; He Y; Fu Y; Xie W; Feng Y; Alejandro K
    Waste Manag; 2021 May; 126():517-526. PubMed ID: 33839403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.