These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38195401)

  • 1. Solvation Structure Regulation for Highly Reversible Aqueous Al Metal Batteries.
    Zhao Z; Zhang Z; Xu T; Wang W; Wang B; Yu X
    J Am Chem Soc; 2024 Jan; 146(3):2257-2266. PubMed ID: 38195401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries.
    Ejigu A; Le Fevre LW; Elgendy A; Spencer BF; Bawn C; Dryfe RAW
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25232-25245. PubMed ID: 35622978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Reversible MnO
    Qin Z; Song Y; Yang D; Zhang MY; Shi HY; Li C; Sun X; Liu XX
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10526-10534. PubMed ID: 35175021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Aluminum Solvation with Ionic Liquids for Improved Aqueous-Based Aluminum-Ion Batteries.
    Lahiri A; Guan S; Chutia A
    ACS Appl Energy Mater; 2023 Dec; 6(23):11874-11881. PubMed ID: 38098871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal strategy towards high-energy aqueous multivalent-ion batteries.
    Tang X; Zhou D; Zhang B; Wang S; Li P; Liu H; Guo X; Jaumaux P; Gao X; Fu Y; Wang C; Wang C; Wang G
    Nat Commun; 2021 May; 12(1):2857. PubMed ID: 34001901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Aqueous Batteries Based on Bipolar Dissociation of Aluminum Hydroxyacetate Electrolyte.
    Zhang Q; Liu X; Lu Y; Ni Y; Xie W; Yan Z; Li F; Chen J
    J Am Chem Soc; 2024 Feb; 146(8):5597-5604. PubMed ID: 38366992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining Electrolyte Compatibility on Polymorphic MnO
    Ye X; Li H; Hatakeyama T; Kobayashi H; Mandai T; Okamoto NL; Ichitsubo T
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56685-56696. PubMed ID: 36521016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Salt Mixed Electrolyte for High Performance Aqueous Aluminum Batteries.
    Sun Q; Chai L; Chen S; Zhang W; Yang HY; Li Z
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10061-10069. PubMed ID: 38372285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic Rechargeable Al/Zn Hybrid Aqueous Batteries Based on Al-Zn Alloys with Composite Electrolytes.
    Yang X; Zhang C; Chai L; Zhang W; Li Z
    Adv Mater; 2022 Nov; 34(45):e2206099. PubMed ID: 36103726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries.
    Ran Q; Shi H; Meng H; Zeng SP; Wan WB; Zhang W; Wen Z; Lang XY; Jiang Q
    Nat Commun; 2022 Jan; 13(1):576. PubMed ID: 35102182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive.
    Sun P; Ma L; Zhou W; Qiu M; Wang Z; Chao D; Mai W
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18247-18255. PubMed ID: 34036748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stable Al Metal Anode Enabled by Surface Chemical Passivation for Long-Life Aqueous Al Metal Batteries.
    Hao Q; Chen F; Chen X; Meng Q; Qi Y; Li N
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34303-34310. PubMed ID: 37419496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an Artificial Solid Electrolyte Interphase Formed on an Aluminum Anode and Its Application in Rechargeable Aqueous Aluminum Batteries.
    Li C; Lv Z; Du H; Zhao L; Yao J; Han Y; Chen H; Zhang G; Bian Y
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):50166-50173. PubMed ID: 37870466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Less is More: Underlying Mechanism of Zn Electrode Long-Term Stability using Sodium L-Ascorbate as Electrolyte Additive.
    Luo Y; Yin J; Chen P; Wang B; Xu J; Wang Z; Guo K
    Small; 2024 Jul; 20(28):e2310824. PubMed ID: 38282374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working Aqueous Zn Metal Batteries at 100 °C.
    Wang J; Yang Y; Wang Y; Dong S; Cheng L; Li Y; Wang Z; Trabzon L; Wang H
    ACS Nano; 2022 Oct; 16(10):15770-15778. PubMed ID: 36066564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes.
    Zhao K; Liu F; Fan G; Liu J; Yu M; Yan Z; Zhang N; Cheng F
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47650-47658. PubMed ID: 34586779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent control of water O-H bonds for highly reversible zinc ion batteries.
    Wang Y; Wang Z; Pang WK; Lie W; Yuwono JA; Liang G; Liu S; Angelo AM; Deng J; Fan Y; Davey K; Li B; Guo Z
    Nat Commun; 2023 May; 14(1):2720. PubMed ID: 37169771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the Li
    Xiao D; Li Q; Luo D; Li G; Liu H; Shui L; Gourley S; Zhou G; Wang X; Chen Z
    Small; 2020 Nov; 16(47):e2004688. PubMed ID: 33136327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreasing Water Activity Using the Tetrahydrofuran Electrolyte Additive for Highly Reversible Aqueous Zinc Metal Batteries.
    He W; Ren Y; Lamsal BS; Pokharel J; Zhang K; Kharel P; Wu JJ; Xian X; Cao Y; Zhou Y
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6647-6656. PubMed ID: 36696100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.