These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
3. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules. Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703 [TBL] [Abstract][Full Text] [Related]
4. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis. Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865 [TBL] [Abstract][Full Text] [Related]
5. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
6. Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters. Liang L; Zhang H; Lei H; Zhou H; Wu Y; Shen J Technol Cancer Res Treat; 2022; 21():15330338221119748. PubMed ID: 36259167 [No Abstract] [Full Text] [Related]
7. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. González Maldonado S; Delorme S; Hüsing A; Motsch E; Kauczor HU; Heussel CP; Kaaks R JAMA Netw Open; 2020 Feb; 3(2):e1921221. PubMed ID: 32058555 [TBL] [Abstract][Full Text] [Related]
8. A predictive nomogram for two-year growth of CT-indeterminate small pulmonary nodules. Xue LM; Li Y; Zhang Y; Wang SC; Zhang RY; Ye JD; Yu H; Qiang JW Eur Radiol; 2022 Apr; 32(4):2672-2682. PubMed ID: 34677668 [TBL] [Abstract][Full Text] [Related]
9. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Choi W; Oh JH; Riyahi S; Liu CJ; Jiang F; Chen W; White C; Rimner A; Mechalakos JG; Deasy JO; Lu W Med Phys; 2018 Apr; 45(4):1537-1549. PubMed ID: 29457229 [TBL] [Abstract][Full Text] [Related]
10. An Effective Malignancy Prediction Model for Incidentally Detected Pulmonary Subsolid Nodules Based on Current and Prior CT Scans. Li S; Chen M; Wang Y; Li X; Gao G; Luo X; Tang L; Liu X; Wu N Clin Lung Cancer; 2023 Dec; 24(8):e301-e310. PubMed ID: 37596166 [TBL] [Abstract][Full Text] [Related]
12. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Tu SJ; Wang CW; Pan KT; Wu YC; Wu CT Phys Med Biol; 2018 Mar; 63(6):065005. PubMed ID: 29446758 [TBL] [Abstract][Full Text] [Related]
13. The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study. Wang M; Wei Y; Zhu M; Yu H; Guo C; Chen Z; Shi W; Ren J; Zhao W; Yang Z; Chen LA Technol Cancer Res Treat; 2024; 23():15330338241287089. PubMed ID: 39363876 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
15. Developing of risk models for small solid and subsolid pulmonary nodules based on clinical and quantitative radiomics features. Zhang R; Sun H; Chen B; Xu R; Li W J Thorac Dis; 2021 Jul; 13(7):4156-4168. PubMed ID: 34422345 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT. Venkadesh KV; Setio AAA; Schreuder A; Scholten ET; Chung K; W Wille MM; Saghir Z; van Ginneken B; Prokop M; Jacobs C Radiology; 2021 Aug; 300(2):438-447. PubMed ID: 34003056 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance radiomic feature performance in pulmonary nodule classification and impact of segmentation variability on radiomics. Koo CW; Kline TL; Yoon JH; Vercnocke AJ; Johnson MP; Suman G; Lu A; Larson NB Br J Radiol; 2022 Dec; 95(1140):20220230. PubMed ID: 36367095 [TBL] [Abstract][Full Text] [Related]
18. Validation of the BRODERS classifier (Benign Maldonado F; Varghese C; Rajagopalan S; Duan F; Balar AB; Lakhani DA; Antic SL; Massion PP; Johnson TF; Karwoski RA; Robb RA; Bartholmai BJ; Peikert T Eur Respir J; 2021 Apr; 57(4):. PubMed ID: 33303552 [TBL] [Abstract][Full Text] [Related]
19. A clinical-radiomics nomogram for the preoperative prediction of lung metastasis in colorectal cancer patients with indeterminate pulmonary nodules. Hu T; Wang S; Huang L; Wang J; Shi D; Li Y; Tong T; Peng W Eur Radiol; 2019 Jan; 29(1):439-449. PubMed ID: 29948074 [TBL] [Abstract][Full Text] [Related]
20. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules. Liu J; Qi L; Wang Y; Li F; Chen J; Cui S; Cheng S; Zhou Z; Li L; Wang J Eur Radiol Exp; 2024 Jan; 8(1):8. PubMed ID: 38228868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]