These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38195798)

  • 1. Stereodivergent Protein Engineering of Fatty Acid Photodecarboxylase for Light-Driven Kinetic Resolution of Sec-Alcohol Oxalates.
    Mou K; Guo Y; Xu W; Li D; Wang Z; Wu Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318374. PubMed ID: 38195798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase.
    Xu J; Fan J; Lou Y; Xu W; Wang Z; Li D; Zhou H; Lin X; Wu Q
    Nat Commun; 2021 Jun; 12(1):3983. PubMed ID: 34172745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Driven Kinetic Resolution of α-Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase.
    Xu J; Hu Y; Fan J; Arkin M; Li D; Peng Y; Xu W; Lin X; Wu Q
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8474-8478. PubMed ID: 31033108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters.
    Xu J; Cen Y; Singh W; Fan J; Wu L; Lin X; Zhou J; Huang M; Reetz MT; Wu Q
    J Am Chem Soc; 2019 May; 141(19):7934-7945. PubMed ID: 31023008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Photodecarboxylation on Secondary and Tertiary Carboxylic Acids.
    Zheng J; Shen Z; Gao JM; Zhou J; Gu Y
    Org Lett; 2023 Dec; 25(48):8564-8569. PubMed ID: 38019531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of trans Fatty Acids.
    Li D; Han T; Xue J; Xu W; Xu J; Wu Q
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20695-20699. PubMed ID: 34288332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photobiocatalytic Decarboxylation for the Synthesis of Fatty Epoxides from Renewable Fatty Acids.
    Ge R; Zhang P; Dong X; Li Y; Sun Z; Zeng Y; Chen B; Zhang W
    ChemSusChem; 2022 Oct; 15(20):e202201275. PubMed ID: 36036214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilisation of the Fatty Acid Decarboxylase from Chlorella variabilis by Caprylic Acid.
    Wu Y; Paul CE; Hollmann F
    Chembiochem; 2021 Jul; 22(14):2420-2423. PubMed ID: 34002919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green light enhanced the photostability and catalytic performance of fatty acid photodecarboxylase.
    Xia A; Guo X; Chai Y; Zhang W; Huang Y; Zhu X; Zhu X; Liao Q
    Chem Commun (Camb); 2023 May; 59(44):6674-6677. PubMed ID: 37096404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Driven Enzymatic Decarboxylation of Dicarboxylic Acids.
    Zeng YY; Liu L; Chen BS; Zhang W
    ChemistryOpen; 2021 May; 10(5):553-559. PubMed ID: 33945237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of fatty acid photodecarboxylase in magnetic nickel ferrite nanoparticle.
    Li F; Xia A; Guo X; Huang Y; Zhu X; Zhu X; Liao Q
    Bioresour Technol; 2023 Oct; 385():129374. PubMed ID: 37352988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review.
    Zhang L; Sun Z; Xu G; Ni Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132238. PubMed ID: 38729463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drop-in biofuel production using fatty acid photodecarboxylase from
    Bruder S; Moldenhauer EJ; Lemke RD; Ledesma-Amaro R; Kabisch J
    Biotechnol Biofuels; 2019; 12():202. PubMed ID: 31462926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensification of Double Kinetic Resolution of Chiral Amines and Alcohols via Chemoselective Formation of a Carbonate-Enzyme Intermediate.
    Samsonowicz-Górski J; Brodzka A; Ostaszewski R; Koszelewski D
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulation of racemase activity by employing a pair of stereocomplementary biocatalysts.
    Gruber CC; Nestl BM; Gross J; Hildebrandt P; Bornscheuer UT; Faber K; Kroutil W
    Chemistry; 2007; 13(29):8271-6. PubMed ID: 17639544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope.
    Wu Q; Soni P; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1872-81. PubMed ID: 23301759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocatalytic effect boosts the production of medium-chain hydrocarbons by fatty acid photodecarboxylase.
    Samire PP; Zhuang B; Légeret B; Baca-Porcel Á; Peltier G; Sorigué D; Aleksandrov A; Beisson F; Müller P
    Sci Adv; 2023 Mar; 9(13):eadg3881. PubMed ID: 37000872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-Driven Enzymatic Decarboxylation of Fatty Acids.
    Huijbers MME; Zhang W; Tonin F; Hollmann F
    Angew Chem Int Ed Engl; 2018 Oct; 57(41):13648-13651. PubMed ID: 30106504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deracemisation methods.
    Turner NJ
    Curr Opin Chem Biol; 2010 Apr; 14(2):115-21. PubMed ID: 20044298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical-based photoinactivation of fatty acid photodecarboxylases.
    Lakavath B; Hedison TM; Heyes DJ; Shanmugam M; Sakuma M; Hoeven R; Tilakaratna V; Scrutton NS
    Anal Biochem; 2020 Jul; 600():113749. PubMed ID: 32348726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.