These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38196064)

  • 1. Facilitating the Electrochemical Oxidation of ZnS through Iodide Catalysis for Aqueous Zinc-Sulfur Batteries.
    Hei P; Sai Y; Liu C; Li W; Wang J; Sun X; Song Y; Liu XX
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202316082. PubMed ID: 38196064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery.
    Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K
    ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low Cost Aqueous Zn-S Battery Realizing Ultrahigh Energy Density.
    Li W; Wang K; Jiang K
    Adv Sci (Weinh); 2020 Dec; 7(23):2000761. PubMed ID: 33304742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Electrolyte Design for High-Performance Zinc-Sulfur Battery.
    Guo Y; Chua R; Chen Y; Cai Y; Tang EJJ; Lim JJN; Tran TH; Verma V; Wong MW; Srinivasan M
    Small; 2023 Jul; 19(29):e2207133. PubMed ID: 36971296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace Selenium Doping for Improving the Reaction Kinetics of ZnS Cathode for Aqueous Zn-S Batteries.
    Ren Y; Li J; Zhang Y; Huang Y; Li Z
    Small; 2024 Sep; 20(38):e2402466. PubMed ID: 38742945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tellurium-Boosted High-Areal-Capacity Zinc-Sulfur Battery.
    Zhang Y; Amardeep A; Wu Z; Tao L; Xu J; Freschi DJ; Liu J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308580. PubMed ID: 38566441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect between S and Te enhancing the electrochemical behavior of heteroatomic TeS-x cathodes in aqueous Zn-TeS batteries.
    Chang G; Hao Y; Huang C; Yang Y; Qian Y; Zhu D; Liu Z; Liu Z; Tang Q; Chen X; Hu A
    J Colloid Interface Sci; 2024 Dec; 675():630-638. PubMed ID: 38991277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Reversible Positive-Valence Conversion of Sulfur Chemistry for High-Voltage Zinc-Sulfur Batteries.
    Chen Z; Huang Z; Zhu J; Li D; Chen A; Wei Z; Wang Y; Li N; Zhi C
    Adv Mater; 2024 Jul; 36(30):e2402898. PubMed ID: 38862392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Zinc-Chlorine Battery Modulated by a MnO
    Chen N; Wang W; Ma Y; Chuai M; Zheng X; Wang M; Xu Y; Yuan Y; Sun J; Li K; Meng Y; Shen C; Chen W
    Small Methods; 2024 Jun; 8(6):e2201553. PubMed ID: 37086122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the Capacity of Bismuth Oxide by a Redox Mediator Strategy for High-Performance Aqueous Zn-Ion Batteries.
    Liu N; Liu Z; Li J; Ge Z; Fan L; Zhao C; Guo Z; Chen A; Lu X; Zhang Y; Zhang N; Zhang X
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37903333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film".
    Zhao Y; Wang D; Li X; Yang Q; Guo Y; Mo F; Li Q; Peng C; Li H; Zhi C
    Adv Mater; 2020 Aug; 32(32):e2003070. PubMed ID: 32596928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A special core-shell ZnS-CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries.
    Shi T; Zhao C; Zhou Y; Yin H; Song C; Qin L; Wang Z; Shao H; Yu K
    J Colloid Interface Sci; 2021 Oct; 599():416-426. PubMed ID: 33962202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Zn-I
    Niu S; Zhao B; Liu D
    ACS Appl Mater Interfaces; 2023 May; 15(21):25558-25566. PubMed ID: 37198728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Electrocatalysis and Spatial Nanoconfinement to Accelerate Sulfur Conversion Kinetics in Aqueous Zn-S Battery.
    Li J; Liu J; Xie F; Bi R; Zhang L
    Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202406126. PubMed ID: 38923075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mn
    Wu J; Huang J; Chi X; Yang J; Liu Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53627-53635. PubMed ID: 36417686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activating sulfur oxidation reaction
    Yang Z; Wang B; Chen Y; Zhou W; Li H; Zhao R; Li X; Zhang T; Bu F; Zhao Z; Li W; Chao D; Zhao D
    Natl Sci Rev; 2023 Jun; 10(6):nwac268. PubMed ID: 37181097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Anion Regulation for Reversible and Energetic Aqueous Zn-CO
    Wang H; Aslam MK; Nie Z; Yang K; Li X; Chen S; Li Q; Chao D; Duan J
    Small Methods; 2024 Jun; 8(6):e2300867. PubMed ID: 37904326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Sulfur-Doped Three-Dimensional Ti
    An Y; Tian Y; Liu C; Xiong S; Feng J; Qian Y
    ACS Nano; 2021 Sep; 15(9):15259-15273. PubMed ID: 34435782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molten Salt Thermal Treatment Synthesis of S-Doped V
    Jiang W; Shi H; Shen M; Tang R; Tang Z; Wang JQ
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14482-14491. PubMed ID: 35275611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.