These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38196146)

  • 1. Crosstalk between the subiculum and sleep-wake regulation: A review.
    Rahimi S; Joyce L; Fenzl T; Drexel M
    J Sleep Res; 2024 Jan; ():e14134. PubMed ID: 38196146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neuroanatomy and neurochemistry of sleep-wake control.
    Gompf HS; Anaclet C
    Curr Opin Physiol; 2020 Jun; 15():143-151. PubMed ID: 32647777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep neurobiology from a clinical perspective.
    España RA; Scammell TE
    Sleep; 2011 Jul; 34(7):845-58. PubMed ID: 21731134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state.
    Deurveilher S; Semba K
    Neuroscience; 2005; 130(1):165-83. PubMed ID: 15561433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.
    Quattrochi J; Datta S; Hobson JA
    Neuroscience; 1998 Apr; 83(4):1123-36. PubMed ID: 9502251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii).
    Bhagwandin A; Gravett N; Bennett NC; Manger PR
    J Chem Neuroanat; 2013 Sep; 52():69-79. PubMed ID: 23796985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projections of the ventral premammillary nucleus.
    Canteras NS; Simerly RB; Swanson LW
    J Comp Neurol; 1992 Oct; 324(2):195-212. PubMed ID: 1430329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurophysiology of sleep and wakefulness: basic science and clinical implications.
    Schwartz JR; Roth T
    Curr Neuropharmacol; 2008 Dec; 6(4):367-78. PubMed ID: 19587857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic administration and local microinjection into the central nervous system of the 5-HT(7) receptor agonist LP-211 modify the sleep-wake cycle in the rat.
    Monti JM; Leopoldo M; Jantos H
    Behav Brain Res; 2014 Feb; 259():321-9. PubMed ID: 24286819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area.
    Prokofeva K; Saito YC; Niwa Y; Mizuno S; Takahashi S; Hirano A; Sakurai T
    J Neurosci; 2023 May; 43(22):4075-4092. PubMed ID: 37117013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics.
    Mondino A; Hambrecht-Wiedbusch VS; Li D; York AK; Pal D; González J; Torterolo P; Mashour GA; Vanini G
    J Neurosci; 2021 Apr; 41(15):3462-3478. PubMed ID: 33664133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice.
    Chowdhury S; Matsubara T; Miyazaki T; Ono D; Fukatsu N; Abe M; Sakimura K; Sudo Y; Yamanaka A
    Elife; 2019 Jun; 8():. PubMed ID: 31159923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The connections of the septal region in the rat.
    Swanson LW; Cowan WM
    J Comp Neurol; 1979 Aug; 186(4):621-55. PubMed ID: 15116692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of sleep and wakefulness in health and disease.
    Zeitzer JM
    Prog Mol Biol Transl Sci; 2013; 119():137-54. PubMed ID: 23899597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation.
    Samuels ER; Szabadi E
    Curr Neuropharmacol; 2008 Sep; 6(3):235-53. PubMed ID: 19506723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferents to the ventrolateral preoptic nucleus.
    Chou TC; Bjorkum AA; Gaus SE; Lu J; Scammell TE; Saper CB
    J Neurosci; 2002 Feb; 22(3):977-90. PubMed ID: 11826126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep.
    Jiang J; Zou G; Liu J; Zhou S; Xu J; Sun H; Zou Q; Gao JH
    Hum Brain Mapp; 2021 Aug; 42(11):3667-3679. PubMed ID: 33960583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Huang YL; Cao Q; Xu YP; Yang G; Ding H; Song JZ; Ye H; Sheng ZF; Wang ZJ; Zhang YH
    Mol Brain; 2016 Jul; 9(1):71. PubMed ID: 27456222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.