BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38196348)

  • 21. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors.
    Karlsson D; Fallarero A; Brunhofer G; Mayer C; Prakash O; Mohan CG; Vuorela P; Erker T
    Eur J Pharm Sci; 2012 Aug; 47(1):190-205. PubMed ID: 22683890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.
    Petrov KA; Girard E; Nikitashina AD; Colasante C; Bernard V; Nurullin L; Leroy J; Samigullin D; Colak O; Nikolsky E; Plaud B; Krejci E
    J Neurosci; 2014 Sep; 34(36):11870-83. PubMed ID: 25186736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ
    Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of Acetylcholinesterase and Butyrylcholinesterase by a Plant Secondary Metabolite Boldine.
    Kostelnik A; Pohanka M
    Biomed Res Int; 2018; 2018():9634349. PubMed ID: 29850593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes.
    Pezzementi L; Nachon F; Chatonnet A
    PLoS One; 2011 Feb; 6(2):e17396. PubMed ID: 21364766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse.
    Li B; Stribley JA; Ticu A; Xie W; Schopfer LM; Hammond P; Brimijoin S; Hinrichs SH; Lockridge O
    J Neurochem; 2000 Sep; 75(3):1320-31. PubMed ID: 10936216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors.
    Ma W; Bi J; Zhao C; Gao Y; Zhang G
    Carbohydr Res; 2020 May; 491():107977. PubMed ID: 32169593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Butyrylcholinesterase distribution in the mouse gastrointestinal tract: An immunohistochemical study.
    Severi I; Abbatelli S; Perugini J; Di Mercurio E; Senzacqua M; Giordano A
    J Anat; 2023 Feb; 242(2):245-256. PubMed ID: 36004682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.
    Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS
    Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S-transferase inhibitors.
    Karaytuğ MO; Balcı N; Türkan F; Gürbüz M; Demirkol ME; Namlı Z; Tamam L; Gülçin İ
    J Biochem Mol Toxicol; 2023 Feb; 37(2):e23259. PubMed ID: 36419212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation.
    Yang Y; Cheng X; Liu W; Chou G; Wang Z; Wang C
    J Ethnopharmacol; 2015 Jun; 168():279-86. PubMed ID: 25862961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM
    Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer's disease.
    Kumar A; Pintus F; Di Petrillo A; Medda R; Caria P; Matos MJ; Viña D; Pieroni E; Delogu F; Era B; Delogu GL; Fais A
    Sci Rep; 2018 Mar; 8(1):4424. PubMed ID: 29535344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Wu J; Pistolozzi M; Liu S; Tan W
    Bioorg Med Chem; 2020 Mar; 28(5):115324. PubMed ID: 32008882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-based virtual screening leading to discovery of highly selective butyrylcholinesterase inhibitors with solanaceous alkaloid scaffolds.
    Zhou S; Yuan Y; Zheng F; Zhan CG
    Chem Biol Interact; 2019 Aug; 308():372-376. PubMed ID: 31152736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy.
    Yang SH; Sun Q; Xiong H; Liu SY; Moosavi B; Yang WC; Yang GF
    Chem Commun (Camb); 2017 Apr; 53(28):3952-3955. PubMed ID: 28322391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes.
    Al-Aboudi A; Al-Qawasmeh RA; Shahwan A; Mahmood U; Khalid A; Ul-Haq Z
    Acta Pharmacol Sin; 2015 Jul; 36(7):879-86. PubMed ID: 25937631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacophore-based drug design of AChE and BChE dual inhibitors as potential anti-Alzheimer's disease agents.
    Gao H; Jiang Y; Zhan J; Sun Y
    Bioorg Chem; 2021 Sep; 114():105149. PubMed ID: 34252860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.