BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38196905)

  • 1. Synthesis of novel fluorescence probes and their application in the enantioselective recognition of arginine.
    Xu J; Cao F; Lu C; Song Z; Dai Z
    RSC Adv; 2024 Jan; 14(3):1970-1976. PubMed ID: 38196905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a "turn-on"-type enantioselective fluorescence sensor via a modified achiral MOF: applications for synchronous detection of phenylalaninol enantiomers.
    Xiao J; Wang X; Xu X; Tian F; Liu Z
    Analyst; 2021 Feb; 146(3):937-942. PubMed ID: 33242037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step hydrothermal preparation of chiral carbon quantum dots and enantioselective sensing of glutamine enantiomeric isomers.
    Li X; Wu J; Zhu X
    Luminescence; 2023 Dec; ():. PubMed ID: 38041512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe.
    Jafar-Nezhad Ivrigh Z; Fahimi-Kashani N; Morad R; Jamshidi Z; Hormozi-Nezhad MR
    Anal Chim Acta; 2022 Oct; 1231():340386. PubMed ID: 36220286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H
    Wei Z; Tang S; Sun X; Hu Y
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers.
    Yuan H; Huang Y; Yang J; Guo Y; Zeng X; Zhou S; Cheng J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():330-338. PubMed ID: 29709792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective and enantioselective fluorescent identification of specific amino acid enantiomers.
    Pu L
    Chem Commun (Camb); 2022 Jul; 58(58):8038-8048. PubMed ID: 35772182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral fluorescent sensor based on H
    Zhang Y; Wang H; Yu H; Sun X
    RSC Adv; 2022 Apr; 12(19):11967-11973. PubMed ID: 35481074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of nitrogen-doped carbon dots as sensitive fluorescence probes for selective recognition of cinnamaldehyde and l-Arginine/l-Lysine in living cells.
    Wei S; Shi X; Wang C; Zhang H; Jiang C; Sun G; Jiang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122039. PubMed ID: 36410179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective discrimination and quantification of arginine and N-blocked arginine enantiomers by formation and dissociation of calcium-mediated diastereomeric trimer complexes with a chiral reference compound using electrospray ionization-ion trap tandem mass spectrometry.
    Schug KA; Lindner W
    J Am Soc Mass Spectrom; 2005 Jun; 16(6):825-34. PubMed ID: 15907698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex.
    Tang S; Wei Z; Guo J; Sun X; Hu Y
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric and Fluorescent Dual-Signal Chemosensor for Lysine and Arginine and Its Application to Detect Amines in Solid-Phase Peptide Synthesis.
    Yang L; Xie Y; Chen Q; Zhang J; Li L; Sun H
    ACS Appl Bio Mater; 2021 Aug; 4(8):6558-6564. PubMed ID: 35006897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition.
    Yu F; Chen Y; Jiang H; Wang X
    Analyst; 2020 Oct; 145(21):6769-6812. PubMed ID: 32960189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kissing interactions for the design of a multicolour fluorescence anisotropy chiral aptasensor.
    Chovelon B; Fiore E; Faure P; Peyrin E; Ravelet C
    Talanta; 2019 Dec; 205():120098. PubMed ID: 31450392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic Enantioselective Fluorescent Recognition of Amino Acids by a Fluorophilic Probe.
    Zhu YY; Wu XD; Abed M; Gu SX; Pu L
    Chemistry; 2019 Jun; 25(33):7866-7873. PubMed ID: 30893491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.