BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3819729)

  • 41. Adhesion of axolemmal fragments to Schwann cells: a signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis.
    Sobue G; Pleasure D
    J Neurosci; 1985 Feb; 5(2):379-87. PubMed ID: 3973672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Freeze-fracture characterization of isolated myelin and axolemma membrane fractions.
    Cullen MJ; de Vries GH; Webster HD
    Brain Res; 1981 Dec; 229(2):311-22. PubMed ID: 7306816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosynthesis of neutral glucocerebroside homologues in the absence of myelin assembly after nerve transection.
    Yao JK; Poduslo JF
    J Neurochem; 1988 Feb; 50(2):630-8. PubMed ID: 3335862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytochemical localization of ATPase in axon-myelin-Schwann cell complex type.
    Dolapchieva S; Ichev K; Ovtscharoff W
    Z Mikrosk Anat Forsch; 1989; 103(1):151-65. PubMed ID: 2526980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of peripheral glial cell proliferation: enteric neurons exert an inhibitory influence on Schwann cell and enteric glial cell DNA synthesis in culture.
    Eccleston PA; Bannerman PG; Pleasure DE; Winter J; Mirsky R; Jessen KR
    Development; 1989 Sep; 107(1):107-12. PubMed ID: 2627889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Schwann cells stimulated by axolemma-enriched fractions express cyclic AMP responsive element binding protein.
    Lee MM; Sato-Bigbee C; De Vries GH
    J Neurosci Res; 1996 Oct; 46(2):204-10. PubMed ID: 8915897
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for regulation of myelin protein synthesis by contact between adjacent Schwann cell plasma membranes.
    Sasagasako N; Ohno M; Quarles RH
    Dev Neurosci; 1999; 21(6):417-22. PubMed ID: 10640860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface behavior of axolemma monolayers: physico-chemical characterization and use as supported planar membranes for cultured Schwann cells.
    Calderon RO; Maggio B; Neuberger TJ; De Vries GH
    J Neurosci Res; 1993 Feb; 34(2):206-18. PubMed ID: 8450564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Association of glucocerebroside homolog biosynthesis with Schwann cell proliferation.
    Yao JK; Yoshino JE
    Neurochem Res; 1994 Jan; 19(1):31-5. PubMed ID: 8139759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production.
    Weinberg HJ; Spencer PS
    Brain Res; 1976 Aug; 113(2):363-78. PubMed ID: 953741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of myelination: axons not required for the biosynthesis of basal levels of the major myelin glycoprotein by Schwann cells in denervated distal segments of the adult cat sciatic nerve.
    Poduslo JF; Berg CT; Ross SM; Spencer PS
    J Neurosci Res; 1985; 14(2):177-85. PubMed ID: 2413224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Schwann cell precursors and their development.
    Jessen KR; Mirsky R
    Glia; 1991; 4(2):185-94. PubMed ID: 1851727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Progressive dysfunction of twitcher Schwann cells is evaluated better in vitro than in vivo.
    Komiyama A; Suzuki K
    Brain Res; 1994 Feb; 637(1-2):106-13. PubMed ID: 8180787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of neonatal Schwann cells from cryopreserved rat sciatic nerves.
    Mason PW; Attema BL; DeVries GH
    J Neurosci Res; 1992 Apr; 31(4):731-44. PubMed ID: 1374481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Schwann cell mitosis in response to regenerating peripheral axons in vivo.
    Pellegrino RG; Spencer PS
    Brain Res; 1985 Aug; 341(1):16-25. PubMed ID: 3929995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro.
    Lavdas AA; Franceschini I; Dubois-Dalcq M; Matsas R
    Glia; 2006 Jun; 53(8):868-78. PubMed ID: 16598779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endogenous lectin cerebellar soluble lectin involved in myelination is absent from nonmyelinating Schwann cells.
    Kuchler S; Lehmann S; Vincendon G; Zanetta JP
    J Neurochem; 1992 May; 58(5):1768-72. PubMed ID: 1560231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dok4 is involved in Schwann cell myelination and axonal interaction in vitro.
    Blugeon C; Le Crom S; Richard L; Vallat JM; Charnay P; Decker L
    Glia; 2011 Mar; 59(3):351-62. PubMed ID: 21264944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autoradiographic and ultrastructural studies of areas of spinal cord occupied by Schwann cells and Schwann cell myelin.
    Gilmore SA; Sims TJ; Heard JK
    Brain Res; 1982 May; 239(2):365-75. PubMed ID: 7093696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Schwann cell properties. I. Origin of Schwann cell during peripheral nerve regeneration.
    Mei Liu H
    J Neuropathol Exp Neurol; 1973 Jul; 32(3):458-73. PubMed ID: 4724826
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.